BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23775776)

  • 1. Understanding the freezing of biopharmaceuticals: first-principle modeling of the process and evaluation of its effect on product quality.
    Radmanovic N; Serno T; Joerg S; Germershaus O
    J Pharm Sci; 2013 Aug; 102(8):2495-507. PubMed ID: 23775776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway.
    Barnard JG; Singh S; Randolph TW; Carpenter JF
    J Pharm Sci; 2011 Feb; 100(2):492-503. PubMed ID: 20803602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze/thaw of IGG solutions.
    Horn J; Jena S; Aksan A; Friess W
    Eur J Pharm Biopharm; 2019 Jan; 134():185-189. PubMed ID: 30529434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.
    Roessl U; Humi S; Leitgeb S; Nidetzky B
    Biotechnol J; 2015 Sep; 10(9):1390-9. PubMed ID: 25820483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing.
    Hauptmann A; Podgoršek K; Kuzman D; Srčič S; Hoelzl G; Loerting T
    Pharm Res; 2018 Mar; 35(5):101. PubMed ID: 29556730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation design and high-throughput excipient selection based on structural integrity and conformational stability of dilute and highly concentrated IgG1 monoclonal antibody solutions.
    Bhambhani A; Kissmann JM; Joshi SB; Volkin DB; Kashi RS; Middaugh CR
    J Pharm Sci; 2012 Mar; 101(3):1120-35. PubMed ID: 22147527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of Protein Content and Number of Aggregates in Monoclonal Antibody Formulation After Large-Scale Freezing.
    Hauptmann A; Hoelzl G; Loerting T
    AAPS PharmSciTech; 2019 Jan; 20(2):72. PubMed ID: 30631964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze-thawing of fibroblast growth factor 20.
    Maity H; Karkaria C; Davagnino J
    Int J Pharm; 2009 Aug; 378(1-2):122-35. PubMed ID: 19505546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Freeze/Thaw Process on Drug Substance Storage of Therapeutics.
    Rayfield WJ; Kandula S; Khan H; Tugcu N
    J Pharm Sci; 2017 Aug; 106(8):1944-1951. PubMed ID: 28343990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freezing-induced perturbation of tertiary structure of a monoclonal antibody.
    Liu L; Braun LJ; Wang W; Randolph TW; Carpenter JF
    J Pharm Sci; 2014 Jul; 103(7):1979-1986. PubMed ID: 24832730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexplored benefits of controlled ice nucleation: Lyophilization of a highly concentrated monoclonal antibody solution.
    Singh SN; Kumar S; Bondar V; Wang N; Forcino R; Colandene J; Nesta D
    Int J Pharm; 2018 Dec; 552(1-2):171-179. PubMed ID: 30261214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of controlled ice nucleation on process performance and quality attributes of a lyophilized monoclonal antibody.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA; Shah RB
    Int J Pharm; 2013 Jun; 450(1-2):70-8. PubMed ID: 23618961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution.
    Nayak A; Colandene J; Bradford V; Perkins M
    J Pharm Sci; 2011 Oct; 100(10):4198-204. PubMed ID: 21698601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ester hydrolysis of polysorbate 80 in mAb drug product: evidence in support of the hypothesized risk after the observation of visible particulate in mAb formulations.
    Labrenz SR
    J Pharm Sci; 2014 Aug; 103(8):2268-77. PubMed ID: 24942482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamic simulations of temperature, cryoconcentration, and stress time during large-scale freezing and thawing of monoclonal antibody solutions.
    Bluemel O; Pavlišič A; Likozar B; Rodrigues MA; Geraldes V; Bechtold-Peters K; Friess W
    Eur J Pharm Biopharm; 2022 Aug; 177():107-112. PubMed ID: 35764219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of Monoclonal Antibody Aggregation from Dilute toward Concentrated Conditions.
    Nicoud L; Jagielski J; Pfister D; Lazzari S; Massant J; Lattuada M; Morbidelli M
    J Phys Chem B; 2016 Apr; 120(13):3267-80. PubMed ID: 27007829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Throughput Prediction Approach for Monoclonal Antibody Aggregation at High Concentration.
    Zidar M; Šušterič A; Ravnik M; Kuzman D
    Pharm Res; 2017 Sep; 34(9):1831-1839. PubMed ID: 28593474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frozen-state storage stability of a monoclonal antibody: aggregation is impacted by freezing rate and solute distribution.
    Miller MA; Rodrigues MA; Glass MA; Singh SK; Johnston KP; Maynard JA
    J Pharm Sci; 2013 Apr; 102(4):1194-208. PubMed ID: 23400717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.