These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 2377611)

  • 41. Central-pair microtubular complex of Chlamydomonas flagella: polypeptide composition as revealed by analysis of mutants.
    Adams GM; Huang B; Piperno G; Luck DJ
    J Cell Biol; 1981 Oct; 91(1):69-76. PubMed ID: 7028763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Loci affecting flagellar assembly and function map to an unusual linkage group in Chlamydomonas reinhardtii.
    Ramanis Z; Luck DJ
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):423-6. PubMed ID: 3455780
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Radial spokes of Chlamydomonas flagella: polypeptide composition and phosphorylation of stalk components.
    Piperno G; Huang B; Ramanis Z; Luck DJ
    J Cell Biol; 1981 Jan; 88(1):73-9. PubMed ID: 6451632
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental dissection of flagellar surface motility in Chlamydomonas.
    Hoffman JL; Goodenough UW
    J Cell Biol; 1980 Aug; 86(2):656-65. PubMed ID: 7400220
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dimeric novel HSP40 is incorporated into the radial spoke complex during the assembly process in flagella.
    Yang C; Compton MM; Yang P
    Mol Biol Cell; 2005 Feb; 16(2):637-48. PubMed ID: 15563613
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of flagellar size control using a mutant of Chlamydomonas reinhardtii with a variable number of flagella.
    Kuchka MR; Jarvik JW
    J Cell Biol; 1982 Jan; 92(1):170-5. PubMed ID: 7056798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A gene essential for viability and flagellar regeneration maps to the uni linkage group of Chlamydomonas reinhardtii.
    Larkin JC; Lefebvre PA; Silflow CD
    Curr Genet; 1989 May; 15(5):377-84. PubMed ID: 2791033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella.
    Meng D; Cao M; Oda T; Pan J
    J Cell Sci; 2014 Jan; 127(Pt 2):281-7. PubMed ID: 24259666
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flagellar coordination in Chlamydomonas reinhardtii: isolation and reactivation of the flagellar apparatus.
    Hyams JS; Borisy GG
    Science; 1975 Sep; 189(4206):891-3. PubMed ID: 1098148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of a novel Chlamydomonas mutant to demonstrate that flagellar glycoprotein movements are necessary for the expression of gliding motility.
    Bloodgood RA; Salomonsky NL
    Cell Motil Cytoskeleton; 1989; 13(1):1-8. PubMed ID: 2731235
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploring the function of inner and outer dynein arms with Chlamydomonas mutants.
    Kamiya R
    Cell Motil Cytoskeleton; 1995; 32(2):98-102. PubMed ID: 8681402
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker.
    Mayfield SP; Kindle KL
    Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2087-91. PubMed ID: 2179948
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene.
    Mitchell DR; Kang Y
    J Cell Biol; 1991 May; 113(4):835-42. PubMed ID: 1673970
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas.
    Remillard SP; Witman GB
    J Cell Biol; 1982 Jun; 93(3):615-31. PubMed ID: 7118994
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flagellar quiescence in Chlamydomonas: Characterization and defective quiescence in cells carrying sup-pf-1 and sup-pf-2 outer dynein arm mutations.
    Mitchell BF; Grulich LE; Mader MM
    Cell Motil Cytoskeleton; 2004 Mar; 57(3):186-96. PubMed ID: 14743351
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strategies for isolation of flagellar motility and assembly mutants in Chlamydomonas.
    Kamiya R
    Methods Cell Biol; 1995; 47():541-4. PubMed ID: 7476542
    [No Abstract]   [Full Text] [Related]  

  • 57. Beat frequency difference between the two flagella of Chlamydomonas depends on the attachment site of outer dynein arms on the outer-doublet microtubules.
    Takada S; Kamiya R
    Cell Motil Cytoskeleton; 1997; 36(1):68-75. PubMed ID: 8986378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of dynein activity within Chlamydomonas flagella.
    Piperno G
    Cell Motil Cytoskeleton; 1995; 32(2):103-5. PubMed ID: 8681388
    [No Abstract]   [Full Text] [Related]  

  • 59. Tubulin polyglutamylation regulates flagellar motility by controlling a specific inner-arm dynein that interacts with the dynein regulatory complex.
    Kubo T; Yagi T; Kamiya R
    Cytoskeleton (Hoboken); 2012 Dec; 69(12):1059-68. PubMed ID: 23047862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microtubule sliding in flagellar axonemes of Chlamydomonas mutants missing inner- or outer-arm dynein: velocity measurements on new types of mutants by an improved method.
    Kurimoto E; Kamiya R
    Cell Motil Cytoskeleton; 1991; 19(4):275-81. PubMed ID: 1834352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.