These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23776249)

  • 1. Carbon dioxide photolysis from 150 to 210 nm: singlet and triplet channel dynamics, UV-spectrum, and isotope effects.
    Schmidt JA; Johnson MS; Schinke R
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17691-6. PubMed ID: 23776249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth's atmosphere.
    Whitehill AR; Xie C; Hu X; Xie D; Guo H; Ono S
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17697-702. PubMed ID: 23836655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuum ultraviolet photodissociation dynamics of CO
    Yu S; Yuan D; Chen W; Zhou J; Yang X; Wang X
    J Chem Phys; 2019 Dec; 151(21):214306. PubMed ID: 31822085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: wavelength, pressure, and temperature dependency.
    Chakraborty S; Davis RD; Ahmed M; Jackson TL; Thiemens MH
    J Chem Phys; 2012 Jul; 137(2):024309. PubMed ID: 22803538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen isotopic composition of carbon dioxide in the middle atmosphere.
    Liang MC; Blake GA; Lewis BR; Yung YL
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):21-5. PubMed ID: 17190796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ozone photodissociation: isotopic and electronic branching ratios for symmetric and asymmetric isotopologues.
    Ndengué SA; Schinke R; Gatti F; Meyer HD; Jost R
    J Phys Chem A; 2012 Dec; 116(50):12271-9. PubMed ID: 23163640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence.
    Berhanu TA; Meusinger C; Erbland J; Jost R; Bhattacharya SK; Johnson MS; Savarino J
    J Chem Phys; 2014 Jun; 140(24):244306. PubMed ID: 24985637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodissociation dynamics of enolic 1,2-cyclohexanedione at 266, 248, and 193 nm: mechanism and nascent state product distribution of OH.
    Kawade M; Saha A; Upadhyaya HP; Kumar A; Naik PD
    J Phys Chem A; 2013 Mar; 117(12):2415-26. PubMed ID: 23444923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraviolet photolysis of HCHO: absolute HCO quantum yields by direct detection of the HCO radical photoproduct.
    Carbajo PG; Smith SC; Holloway AL; Smith CA; Pope FD; Shallcross DE; Orr-Ewing AJ
    J Phys Chem A; 2008 Dec; 112(48):12437-48. PubMed ID: 18998660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodissociation of ozone in the Hartley band: Product state and angular distributions.
    McBane GC; Nguyen LT; Schinke R
    J Chem Phys; 2010 Oct; 133(14):144312. PubMed ID: 20950005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous enrichment of 17O and 13C in photodissociation products of CO2: possible role of nuclear spin.
    Mahata S; Bhattacharya SK
    J Chem Phys; 2009 Jun; 130(23):234312. PubMed ID: 19548732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV photochemistry of peroxyformic acid (HC(O)OOH): an experimental and computational study investigating 355 nm photolysis.
    Indulkar YN; Louie MK; Sinha A
    J Phys Chem A; 2014 Aug; 118(31):5939-49. PubMed ID: 25050911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass-independent isotope effects in planetary atmospheres and the early solar system.
    Thiemens MH
    Science; 1999 Jan; 283(5400):341-5. PubMed ID: 9888843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of bioorganic compounds in simulated planetary atmospheres by high energy particles or photons.
    Kobayashi K; Masuda H; Ushio KI; Ohashi A; Yamanashi H; Kaneko T; Takahashi JI; Hosokawa T; Hashimoto H; Saito T
    Adv Space Res; 2001; 27(2):207-15. PubMed ID: 11605633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is Nitrate Anion Photodissociation Mediated by Singlet-Triplet Absorption?
    Svoboda O; Slavíček P
    J Phys Chem Lett; 2014 Jun; 5(11):1958-62. PubMed ID: 26273880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A photochemical model of the martian atmosphere.
    Nair H; Allen M; Anbar AD; Yung YL; Clancy RT
    Icarus; 1994 Sep; 111(1):124-50. PubMed ID: 11539176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-to-state photodissociation dynamics of CO
    Zhou J; Luo Z; Yang J; Chang Y; Zhang Z; Yu Y; Li Q; Cheng G; Chen Z; He Z; Che L; Yu S; Wu G; Yuan K; Yang X
    Phys Chem Chem Phys; 2020 Mar; 22(11):6260-6265. PubMed ID: 32129384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the strong and selective isotope effect in the UV excitation of N2 with implications toward the nebula and Martian atmosphere.
    Muskatel BH; Remacle F; Thiemens MH; Levine RD
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6020-5. PubMed ID: 21441106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of the photodissociation of ozone in the Hartley continuum; effect of vibrational excitation and O(1D) atom velocity distribution.
    Baloïtcha E; Balint-Kurti GG
    Phys Chem Chem Phys; 2005 Nov; 7(22):3829-33. PubMed ID: 16358032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.