These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23776641)

  • 1. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers.
    Warfe DM; Jardine TD; Pettit NE; Hamilton SK; Pusey BJ; Bunn SE; Davies PM; Douglas MM
    PLoS One; 2013; 8(6):e66240. PubMed ID: 23776641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consumer-resource coupling in wet-dry tropical rivers.
    Jardine TD; Pettit NE; Warfe DM; Pusey BJ; Ward DP; Douglas MM; Davies PM; Bunn SE
    J Anim Ecol; 2012 Mar; 81(2):310-22. PubMed ID: 22103689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking the resource pulse: Movement responses of fish to dynamic floodplain habitat in a tropical river.
    Crook DA; Buckle DJ; Morrongiello JR; Allsop QA; Baldwin W; Saunders TM; Douglas MM
    J Anim Ecol; 2020 Mar; 89(3):795-807. PubMed ID: 31750933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen loadings affect trophic structure in stream food webs on the Tibetan Plateau, China.
    Zhang J; Xu J; Tan X; Zhang Q
    Sci Total Environ; 2022 Oct; 844():157018. PubMed ID: 35772539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological impacts of local vs. regional land use on a small tributary of the Seine River (France): insights from a food web approach based on stable isotopes.
    Hette-Tronquart N; Oberdorff T; Tales E; Zahm A; Belliard J
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):23583-23594. PubMed ID: 28337627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the impact of dams on aquatic food webs using stable isotopes: Current progress and future challenges.
    Guo F; Fry B; Yan K; Huang J; Zhao Q; O'Mara K; Li F; Gao W; Kainz MJ; Brett MT; Bunn SE; Zhang Y
    Sci Total Environ; 2023 Dec; 904():167097. PubMed ID: 37716688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool.
    Hardy CM; Krull ES; Hartley DM; Oliver RL
    Mol Ecol; 2010 Jan; 19(1):197-212. PubMed ID: 19912537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Niche width collapse in a resilient top predator following ecosystem fragmentation.
    Layman CA; Quattrochi JP; Peyer CM; Allgeier JE
    Ecol Lett; 2007 Oct; 10(10):937-44. PubMed ID: 17845294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terrestrial contributions to the aquatic food web in the middle Yangtze River.
    Wang J; Gu B; Huang J; Han X; Lin G; Zheng F; Li Y
    PLoS One; 2014; 9(7):e102473. PubMed ID: 25047656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of trophic niche compression: Evidence from landscape disturbance.
    Burdon FJ; McIntosh AR; Harding JS
    J Anim Ecol; 2020 Mar; 89(3):730-744. PubMed ID: 31691281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing anthropogenic inputs in stream foods webs with stable carbon and nitrogen isotope systematics along an agricultural gradient.
    Lee KY; Graham L; Spooner DE; Xenopoulos MA
    PLoS One; 2018; 13(7):e0200312. PubMed ID: 29979760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of resource availability and hydrological regime on autochthonous and allochthonous carbon in the food web of a large cross-border river (China).
    Zheng Y; Niu J; Zhou Q; Xie C; Ke Z; Li D; Gao Y
    Sci Total Environ; 2018 Jan; 612():501-512. PubMed ID: 28865268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundance and biomass responses of microbial food web components to hydrology and environmental gradients within a floodplain of the River Danube.
    Palijan G
    Microb Ecol; 2012 Jul; 64(1):39-53. PubMed ID: 22327270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple stressors shape invertebrate assemblages and reduce their trophic niche: A case study in a regulated stream.
    Dolédec S; Simon L; Blemus J; Rigal A; Robin J; Mermillod-Blondin F
    Sci Total Environ; 2021 Jun; 773():145061. PubMed ID: 33940713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drifting plankton from a reservoir subsidize downstream food webs and alter community structure.
    Doi H; Chang KH; Ando T; Imai H; Nakano S; Kajimoto A; Katano I
    Oecologia; 2008 May; 156(2):363-71. PubMed ID: 18297312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. River food webs: an integrative approach to bottom-up flow webs, top-down impact webs, and trophic position.
    Benke AC
    Ecology; 2018 Jun; 99(6):1370-1381. PubMed ID: 29604060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trophic positioning of meiofauna revealed by stable isotopes and food web analyses.
    Schmid-Araya JM; Schmid PE; Tod SP; Esteban GF
    Ecology; 2016 Nov; 97(11):3099-3109. PubMed ID: 27870020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detrital food web contributes to aquatic ecosystem productivity and rapid salmon growth in a managed floodplain.
    Jeffres CA; Holmes EJ; Sommer TR; Katz JVE
    PLoS One; 2020; 15(9):e0216019. PubMed ID: 32946438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of stable isotope techniques in soil food web research].
    Wang X; Liang SW; Tian YJ; Liu XT; Liang WJ; Zhang XK
    Ying Yong Sheng Tai Xue Bao; 2023 Oct; 34(10):2861-2870. PubMed ID: 37897295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consumer trophic positions respond variably to seasonally fluctuating environments.
    McMeans BC; Kadoya T; Pool TK; Holtgrieve GW; Lek S; Kong H; Winemiller K; Elliott V; Rooney N; Laffaille P; McCann KS
    Ecology; 2019 Feb; 100(2):e02570. PubMed ID: 30657592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.