BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23777199)

  • 1. Regiocontrolled synthesis of polysubstituted pyrroles starting from terminal alkynes, sulfonyl azides, and allenes.
    Miura T; Hiraga K; Biyajima T; Nakamuro T; Murakami M
    Org Lett; 2013 Jul; 15(13):3298-301. PubMed ID: 23777199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.
    Miura T; Tanaka T; Matsumoto K; Murakami M
    Chemistry; 2014 Dec; 20(49):16078-82. PubMed ID: 25345587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diastereoselective N-sulfonylaminoalkenylation of azulenes from terminal alkynes and azides via N-sulfonyl-1,2,3-triazoles.
    Park S; Yong WS; Kim S; Lee PH
    Org Lett; 2014 Sep; 16(17):4468-71. PubMed ID: 25133587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodium/Silver-Cocatalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles with Vinyl Azides: Divergent Synthesis of Pyrroles and 2 H-Pyrazines.
    Zhang L; Sun G; Bi X
    Chem Asian J; 2016 Nov; 11(21):3018-3021. PubMed ID: 27643511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aminooxylation Horner-Wadsworth-Emmons Sequence for the Synthesis of Enantioenriched γ-Functionalized Vinyl Sulfones.
    Doherty W; Evans P
    J Org Chem; 2016 Feb; 81(4):1416-24. PubMed ID: 26818590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters.
    Miura T; Funakoshi Y; Fujimoto Y; Nakahashi J; Murakami M
    Org Lett; 2015 May; 17(10):2454-7. PubMed ID: 25927965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodium-catalyzed transannulation of 1,2,3-triazoles to polysubstituted pyrroles.
    Rajasekar S; Anbarasan P
    J Org Chem; 2014 Sep; 79(17):8428-34. PubMed ID: 25078729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of 1-Cyanoalkynes and Their Ruthenium(II)-Catalyzed Cycloaddition with Organic Azides to Afford 4-Cyano-1,2,3-triazoles.
    Liu P; Clark RJ; Zhu L
    J Org Chem; 2018 May; 83(9):5092-5103. PubMed ID: 29630830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective Construction of Spiro[indoline-3,2'-pyrrole] Framework via Catalytic Asymmetric 1,3-Dipolar Cycloadditions Using Allenes as Equivalents of Alkynes.
    Wang CS; Zhu RY; Zheng J; Shi F; Tu SJ
    J Org Chem; 2015 Jan; 80(1):512-20. PubMed ID: 25479415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselective iodoazidation of alkynes: synthesis of α,α-diazidoketones.
    Okamoto N; Sueda T; Minami H; Miwa Y; Yanada R
    Org Lett; 2015 Mar; 17(5):1336-9. PubMed ID: 25719992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot three-step synthesis of 1,2,3-triazoles by copper-catalyzed cycloaddition of azides with alkynes formed by a Sonogashira cross-coupling and desilylation.
    Friscourt F; Boons GJ
    Org Lett; 2010 Nov; 12(21):4936-9. PubMed ID: 20942390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual gold catalysis: a novel synthesis of bicyclic and tricyclic pyrroles from N-propargyl ynamides.
    Tokimizu Y; Wieteck M; Rudolph M; Oishi S; Fujii N; Hashmi AS; Ohno H
    Org Lett; 2015 Feb; 17(3):604-7. PubMed ID: 25611870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of 3-pyrrolin-2-ones by rhodium-catalyzed transannulation of 1-sulfonyl-1,2,3-triazole with ketene silyl acetal.
    Ran RQ; He J; Xiu SD; Wang KB; Li CY
    Org Lett; 2014 Jul; 16(14):3704-7. PubMed ID: 25004242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-copper catalysed highly regioselective synthesis of 2,4-disubstituted pyrroles from terminal alkynes and isocyanides.
    Tiwari DK; Pogula J; Sridhar B; Tiwari DK; Likhar PR
    Chem Commun (Camb); 2015 Sep; 51(71):13646-9. PubMed ID: 26226177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium-catalyzed cycloadditions of 1-haloalkynes with nitrile oxides and organic azides: synthesis of 4-haloisoxazoles and 5-halotriazoles.
    Oakdale JS; Sit RK; Fokin VV
    Chemistry; 2014 Aug; 20(35):11101-10. PubMed ID: 25059647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper on responsive polymer microgels: a recyclable catalyst exhibiting tunable catalytic activity.
    Wu Q; Cheng H; Chang A; Bai X; Lu F; Wu W
    Chem Commun (Camb); 2014 Nov; 50(91):14217-20. PubMed ID: 25283806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot access to sulfonylmethyl arylpyrroles via the domino aerobic Wacker-type aminocyclization/1,4-sulfonyl migration.
    Chang MY; Cheng YC; Lu YJ
    Org Lett; 2014 Dec; 16(23):6252-5. PubMed ID: 25415808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of bicyclic pyrroles from the catalytic coupling reaction of 2,5-disubstituted pyrroles with terminal alkynes, involving the activation of multiple C-H bonds.
    Yi CS; Zhang J
    Chem Commun (Camb); 2008 May; (20):2349-51. PubMed ID: 18473066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodium-catalyzed denitrogenative thioacetalization of N-sulfonyl-1,2,3-triazoles with disulfides: an entry to diverse transformation of terminal alkynes.
    Zhang H; Wang H; Yang H; Fu H
    Org Biomol Chem; 2015 Jun; 13(22):6149-53. PubMed ID: 25927418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient one-pot strategy for the highly regioselective metal-free synthesis of 1,4-disubstituted-1,2,3-triazoles.
    Ali A; Corrêa AG; Alves D; Zukerman-Schpector J; Westermann B; Ferreira MA; Paixão MW
    Chem Commun (Camb); 2014 Oct; 50(80):11926-9. PubMed ID: 25157576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.