These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23777226)

  • 41. How far can hydroxyl radicals travel? An electrochemical study based on a DNA mediated electron transfer process.
    Guo Q; Yue Q; Zhao J; Wang L; Wang H; Wei X; Liu J; Jia J
    Chem Commun (Camb); 2011 Nov; 47(43):11906-8. PubMed ID: 21963764
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping protein-ligand interactions by hydroxyl-radical protein footprinting.
    Loizos N
    Methods Mol Biol; 2004; 261():199-210. PubMed ID: 15064460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting.
    Saladino J; Liu M; Live D; Sharp JS
    J Am Soc Mass Spectrom; 2009 Jun; 20(6):1123-6. PubMed ID: 19278868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitively electrochemical detection of the DNA damage in situ by electro-Fenton reaction based on Fe@Fe2O3 core-shell nanonecklace and multi-walled carbon nanotube composite.
    Wang X; Jiao K
    Anal Chim Acta; 2010 Apr; 664(1):34-9. PubMed ID: 20226929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparison of fenuron degradation by hydroxyl and carbonate radicals in aqueous solution.
    Mazellier P; Busset C; Delmont A; De Laat J
    Water Res; 2007 Dec; 41(20):4585-94. PubMed ID: 17675205
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals.
    Nguyenle T; Laurberg M; Brenowitz M; Noller HF
    J Mol Biol; 2006 Jun; 359(5):1235-48. PubMed ID: 16725154
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Vivo Hydroxyl Radical Protein Footprinting for the Study of Protein Interactions in Caenorhabditis elegans.
    Espino JA; Jones LM
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32310230
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intrinsic Buffer Hydroxyl Radical Dosimetry Using Tris(hydroxymethyl)aminomethane.
    Roush AE; Riaz M; Misra SK; Weinberger SR; Sharp JS
    J Am Soc Mass Spectrom; 2020 Feb; 31(2):169-172. PubMed ID: 32031409
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural analysis of gelsolin using synchrotron protein footprinting.
    Kiselar JG; Janmey PA; Almo SC; Chance MR
    Mol Cell Proteomics; 2003 Oct; 2(10):1120-32. PubMed ID: 12966145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laminar flow effects during laser-induced oxidative labeling for protein structural studies by mass spectrometry.
    Konermann L; Stocks BB; Czarny T
    Anal Chem; 2010 Aug; 82(15):6667-74. PubMed ID: 20669999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals on a boron-doped diamond electrode.
    Oliveira SC; Oliveira-Brett AM
    Langmuir; 2012 Mar; 28(10):4896-901. PubMed ID: 22335175
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiplex Chemical Labeling of Amino Acids for Protein Footprinting Structure Assessment.
    Jain R; Dhillon NS; Farquhar ER; Wang B; Li X; Kiselar J; Chance MR
    Anal Chem; 2022 Jul; 94(27):9819-9825. PubMed ID: 35763792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photochemical surface mapping of C14S-Sml1p for constrained computational modeling of protein structure.
    Sharp JS; Guo JT; Uchiki T; Xu Y; Dealwis C; Hettich RL
    Anal Biochem; 2005 May; 340(2):201-12. PubMed ID: 15840492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in radical probe mass spectrometry for protein footprinting in chemical biology applications.
    Maleknia SD; Downard KM
    Chem Soc Rev; 2014 May; 43(10):3244-58. PubMed ID: 24590115
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural proteomics of macromolecular assemblies using oxidative footprinting and mass spectrometry.
    Guan JQ; Chance MR
    Trends Biochem Sci; 2005 Oct; 30(10):583-92. PubMed ID: 16126388
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidation of carbon monoxide, hydrogen peroxide and water at a boron doped diamond electrode: the competition for hydroxyl radicals.
    Kisacik I; Stefanova A; Ernst S; Baltruschat H
    Phys Chem Chem Phys; 2013 Apr; 15(13):4616-24. PubMed ID: 23422949
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidation reactions of thymol: a pulse radiolysis and theoretical study.
    Venu S; Naik DB; Sarkar SK; Aravind UK; Nijamudheen A; Aravindakumar CT
    J Phys Chem A; 2013 Jan; 117(2):291-9. PubMed ID: 23240914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reaction of hydroxyl radical with aromatic hydrocarbons in nonaqueous solutions: A laser flash photolysis study in acetonitrile.
    Poole JS; Shi X; Hadad CM; Platz MS
    J Phys Chem A; 2005 Mar; 109(11):2547-51. PubMed ID: 16833557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.