BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23777243)

  • 1. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles.
    Aschenbrenner E; Bley K; Koynov K; Makowski M; Kappl M; Landfester K; Weiss CK
    Langmuir; 2013 Jul; 29(28):8845-55. PubMed ID: 23777243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent selection causes remarkable shifts of the "Ouzo region" for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.
    Beck-Broichsitter M; Nicolas J; Couvreur P
    Nanoscale; 2015; 7(20):9215-21. PubMed ID: 25924854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices.
    Lepeltier E; Bourgaux C; Couvreur P
    Adv Drug Deliv Rev; 2014 May; 71():86-97. PubMed ID: 24384372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the "ouzo region" upon drug loading.
    Beck-Broichsitter M; Rytting E; Lebhardt T; Wang X; Kissel T
    Eur J Pharm Sci; 2010 Oct; 41(2):244-53. PubMed ID: 20600881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries.
    Aubry J; Ganachaud F; Cohen Addad JP; Cabane B
    Langmuir; 2009 Feb; 25(4):1970-9. PubMed ID: 19170510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation.
    Legrand P; Lesieur S; Bochot A; Gref R; Raatjes W; Barratt G; Vauthier C
    Int J Pharm; 2007 Nov; 344(1-2):33-43. PubMed ID: 17616282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation.
    Bouchemal K; Briançon S; Perrier E; Fessi H
    Int J Pharm; 2004 Aug; 280(1-2):241-51. PubMed ID: 15265563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of size-controlled starch-based nanospheres by nanoprecipitation.
    Tan Y; Xu K; Li L; Liu C; Song C; Wang P
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):956-9. PubMed ID: 20356023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles.
    Bilati U; Allémann E; Doelker E
    Eur J Pharm Sci; 2005 Jan; 24(1):67-75. PubMed ID: 15626579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling chain organization and photophysical properties of conjugated polymer nanoparticles prepared by reprecipitation method: the effect of initial solvent.
    Potai R; Traiphol R
    J Colloid Interface Sci; 2013 Aug; 403():58-66. PubMed ID: 23683960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters.
    Hornig S; Heinze T
    Biomacromolecules; 2008 May; 9(5):1487-92. PubMed ID: 18393524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ouzo effect: A tool to elaborate high-payload nanocapsules.
    Goubault C; Sciortino F; Mongin O; Jarry U; Bostoën M; Jakobczyk H; Burel A; Dutertre S; Troadec MB; Kahn ML; Chevance S; Gauffre F
    J Control Release; 2020 Aug; 324():430-439. PubMed ID: 32439361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the nanoprecipitation conditions on the supramolecular structure of squalenoyled nanoparticles.
    Lepeltier E; Bourgaux C; Amenitsch H; Rosilio V; Lepetre-Mouelhi S; Zouhiri F; Desmaële D; Couvreur P
    Eur J Pharm Biopharm; 2015 Oct; 96():89-95. PubMed ID: 26210010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, size control, surface deposition, and catalytic reactivity of hydrophobic corrolazine nanoparticles in an aqueous environment.
    Cho K; Kerber WD; Lee SR; Wan A; Batteas JD; Goldberg DP
    Inorg Chem; 2010 Sep; 49(18):8465-73. PubMed ID: 20735145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulisification as an alternative to ultrasonic and high-shear devices.
    Ganachaud F; Katz JL
    Chemphyschem; 2005 Feb; 6(2):209-16. PubMed ID: 15751338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metastable Amorphous Dispersions of Hydrophobic Naphthalene Compounds Can Be Formed in Water without Stabilizing Agents via the "Ouzo Effect".
    Belanger JM; Cirilo JA
    J Phys Chem B; 2023 Sep; 127(37):8032-8039. PubMed ID: 37699852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous formation of drug-containing acrylic nanoparticles.
    Bodmeier R; Chen H; Tyle P; Jarosz P
    J Microencapsul; 1991; 8(2):161-70. PubMed ID: 1765898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homopolymer self-assembly into stable nanoparticles: concerted action of hydrophobic association and hydrogen bonding in thermoresponsive poly(alkylacrylic acid)s.
    Sedlák M
    J Phys Chem B; 2012 Mar; 116(8):2356-64. PubMed ID: 22280359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrohydrodynamic atomization for biodegradable polymeric particle production.
    Xie J; Lim LK; Phua Y; Hua J; Wang CH
    J Colloid Interface Sci; 2006 Oct; 302(1):103-12. PubMed ID: 16842810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.