These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23777243)

  • 61. Size controlled synthesis of sub-100 nm monodisperse poly(methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization.
    Camli ST; Buyukserin F; Balci O; Budak GG
    J Colloid Interface Sci; 2010 Apr; 344(2):528-32. PubMed ID: 20138293
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Formation of unimer nanoparticles by controlling the self-association of hydrophobically modified poly(amino acid)s.
    Akagi T; Piyapakorn P; Akashi M
    Langmuir; 2012 Mar; 28(11):5249-56. PubMed ID: 22385355
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Impact of the Formulation Pathway on the Colloidal State and Crystallinity of Poly-ε-caprolactone Particles Prepared by Solvent Displacement.
    Pucci C; Cousin F; Dole F; Chapel JP; Schatz C
    Langmuir; 2018 Feb; 34(7):2531-2542. PubMed ID: 29356546
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Physicochemical characterisation of cationic polybutylcyanoacrylate-nanoparticles by fluorescence correlation spectroscopy.
    Weyermann J; Lochmann D; Georgens C; Rais I; Kreuter J; Karas M; Wolkenhauer M; Zimmer A
    Eur J Pharm Biopharm; 2004 Jul; 58(1):25-35. PubMed ID: 15207534
    [TBL] [Abstract][Full Text] [Related]  

  • 65. From nanodroplets by the ouzo effect to interfacial nanolenses.
    Peng S; Xu C; Hughes TC; Zhang X
    Langmuir; 2014 Oct; 30(41):12270-7. PubMed ID: 25262570
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanocomposite colloids prepared by the Ouzo effect.
    Rosenfeld J; Ganachaud F; Lee D
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1753-1762. PubMed ID: 37827013
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Continuous Nanoprecipitation of Polycaprolactone in Additively Manufactured Micromixers.
    Göttert S; Salomatov I; Eder S; Seyfang BC; Sotelo DC; Osma JF; Weiss CK
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458259
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Controlled Dye Aggregation in Sodium Dodecylsulfate-Stabilized Poly(methylmethacrylate) Nanoparticles as Fluorescent Imaging Probes.
    Bhargava S; Chu JJH; Valiyaveettil S
    ACS Omega; 2018 Jul; 3(7):7663-7672. PubMed ID: 30221237
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies.
    Yan X; Bernard J; Ganachaud F
    Adv Colloid Interface Sci; 2021 Aug; 294():102474. PubMed ID: 34311157
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Simple elaboration of drug-SPION nanocapsules (hybridosomes®) by solvent shifting: Effect of the drug molecular structure and concentration.
    Iglicki D; Kahn ML; Goubault C; Blot M; Jarry U; Pedeux R; Le Guével R; Chevance S; Gauffre F
    Int J Pharm; 2024 Jan; 649():123645. PubMed ID: 38040393
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Universal nanodroplet branches from confining the Ouzo effect.
    Lu Z; Schaarsberg MHK; Zhu X; Yeo LY; Lohse D; Zhang X
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10332-10337. PubMed ID: 28894002
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis of ultrasmall metal nanoparticles and continuous shells at the liquid/liquid interface in Ouzo emulsions.
    Gazil O; Virgilio N; Gauffre F
    Nanoscale; 2022 Sep; 14(37):13514-13519. PubMed ID: 36106947
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modulation of Oil/Polymer Nanocapsule Size via Phase Diagram-Guided Microfluidic Coprecipitation.
    Rosenfeld J; Ganachaud F; Lee D
    Langmuir; 2023 Apr; 39(15):5477-5485. PubMed ID: 37015180
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Design Rules for Fluorocarbon-Free Omniphobic Solvent Barriers in Paper-Based Devices.
    Jahanshahi-Anbuhi S; Pennings K; Leung V; Kannan B; Brennan JD; Filipe CD; Pelton RH
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25434-40. PubMed ID: 26496157
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fluorescent Organic Nanoparticles of 3-Styrylindoles: Synthesis and Characterization.
    Singh AK; Ansari AWMH
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1381-386. PubMed ID: 29683635
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Tuning Local Order in Starch Nanoparticles Exploiting Nonsolvency with "Green" Solvents.
    Casini A; Casagli M; Poggi G; Chelazzi D; Baglioni P
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38610082
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Translocation of soft phytoglycogen nanoparticles through solid-state nanochannels.
    Lenart WR; Kong W; Oltjen WC; Hore MJA
    J Mater Chem B; 2019 Nov; 7(41):6428-6437. PubMed ID: 31465081
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use.
    Horn D; Rieger J
    Angew Chem Int Ed Engl; 2001 Dec; 40(23):4330-4361. PubMed ID: 12404417
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Proper Determination of Phase Diagrams while Nanoprecipitating Oils.
    Chen Y; Mosa A; Bouvier S; Bernard J; Ganachaud F
    Langmuir; 2024 Jun; 40(24):12488-12496. PubMed ID: 38837953
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Particle Formation Mechanisms in the Nanoprecipitation of Polystyrene.
    Zhao C; Melis S; Hughes EP; Li T; Zhang X; Olmsted PD; Van Keuren E
    Langmuir; 2020 Nov; 36(44):13210-13217. PubMed ID: 33118817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.