BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23777292)

  • 21. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.
    Robb PD; Craven AJ
    Ultramicroscopy; 2008 Dec; 109(1):61-9. PubMed ID: 18814971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete oxidation of ethylene over supported gold nanoparticle catalysts.
    Ahn HG; Choi BM; Lee DJ
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3599-603. PubMed ID: 17252819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sub-angstrom atomic-resolution imaging from heavy atoms to light atoms.
    O'Keefe MA; Shao-Horn Y
    Microsc Microanal; 2004 Feb; 10(1):86-95. PubMed ID: 15306070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy.
    Van Aert S; Verbeeck J; Erni R; Bals S; Luysberg M; Van Dyck D; Van Tendeloo G
    Ultramicroscopy; 2009 Sep; 109(10):1236-44. PubMed ID: 19525069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic-Scale 3D Structure of a Supported Pd Nanoparticle Revealed by Electron Tomography with Convolution Neural Network-Based Image Inpainting.
    Iwai H; Nishino F; Yamamoto T; Kudo M; Tsushida M; Yoshida H; Machida M; Ohyama J
    Small Methods; 2023 Dec; ():e2301163. PubMed ID: 38044263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of active gold nanoclusters on iron oxide supports for CO oxidation.
    Herzing AA; Kiely CJ; Carley AF; Landon P; Hutchings GJ
    Science; 2008 Sep; 321(5894):1331-5. PubMed ID: 18772433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unraveling the Complexity of Nano-Dispersoids in the Oxide Dispersion Strengthened Alloy 617.
    Sinha SK; Dasgupta A; Sivakumar M; Ghosh C; Raju S
    Microsc Microanal; 2022 May; ():1-9. PubMed ID: 35616077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ atomic-scale imaging of the metal/oxide interfacial transformation.
    Zou L; Li J; Zakharov D; Stach EA; Zhou G
    Nat Commun; 2017 Aug; 8(1):307. PubMed ID: 28824169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The structure of an Al3Pd-based modulated structure studied by atomic-scale electron microscopy observations.
    Hiraga K; Ohsuna T; Kawasaki M
    J Electron Microsc (Tokyo); 2000; 49(6):729-33. PubMed ID: 11270853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing the initial stages of molecular organization of oligo(p-phenylenevinylene) assemblies with monolayer protected gold nanoparticles.
    Kumar VRR; Sajini V; Sreeprasad TS; Praveen VK; Ajayaghosh A; Pradeep T
    Chem Asian J; 2009 Jun; 4(6):840-848. PubMed ID: 19462383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atomic structure of a (2 x 1) reconstructed NiSi2/Si(001) interface.
    Falke U; Bleloch A; Falke M; Teichert S
    Phys Rev Lett; 2004 Mar; 92(11):116103. PubMed ID: 15089154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level.
    Park JB; Graciani J; Evans J; Stacchiola D; Ma S; Liu P; Nambu A; Sanz JF; Hrbek J; Rodriguez JA
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):4975-80. PubMed ID: 19276120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frame-by-frame observations of structure fluctuations in single mass-selected Au clusters using aberration-corrected electron microscopy.
    Dearg M; Roncaglia C; Nelli D; El Koraychy EY; Ferrando R; Slater TJA; Palmer RE
    Nanoscale Horiz; 2023 Dec; 9(1):143-147. PubMed ID: 37877366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative atomic-scale analysis of interface structures: transmission electron microscopy and local density functional theory.
    Nufer S; Marinopoulos AG; Gemming T; Elsässer C; Kurtz W; Köstlmeier S; Rühle M
    Phys Rev Lett; 2001 May; 86(22):5066-9. PubMed ID: 11384422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asymmetric Oxygen Vacancies: the Intrinsic Redox Active Sites in Metal Oxide Catalysts.
    Yu K; Lou LL; Liu S; Zhou W
    Adv Sci (Weinh); 2020 Jan; 7(2):1901970. PubMed ID: 31993288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation catalysis by oxide-supported Au nanostructures: the role of supports and the effect of external conditions.
    Laursen S; Linic S
    Phys Rev Lett; 2006 Jul; 97(2):026101. PubMed ID: 16907463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron microscopy analysis of the boundary layer structure of SrTiO3 semiconducting ceramic.
    Kawasaki M; Yoshioka T; Sato S; Nomura T; Shiojiri M
    J Electron Microsc (Tokyo); 2000; 49(1):73-84. PubMed ID: 10791423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TEM and HAADF-STEM study of a Au catalyst supported on a TiO2 nano-rod.
    Akita T; Tanaka K; Okuma K; Koyanagi T; Masatake
    J Electron Microsc (Tokyo); 2001; 50(6):473-7. PubMed ID: 11918412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic-scale imaging of individual dopant atoms in a buried interface.
    Shibata N; Findlay SD; Azuma S; Mizoguchi T; Yamamoto T; Ikuhara Y
    Nat Mater; 2009 Aug; 8(8):654-8. PubMed ID: 19543277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.