These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23777484)

  • 1. Ultrafast spinning of gold nanoparticles in water using circularly polarized light.
    Lehmuskero A; Ogier R; Gschneidtner T; Johansson P; Käll M
    Nano Lett; 2013 Jul; 13(7):3129-34. PubMed ID: 23777484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and Operation of a Light-driven Gold Nanorod Rotary Motor System.
    Andrén D; Karpinski P; Käll M
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 30010664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization gradient: exploring an original route for optical trapping and manipulation.
    Cipparrone G; Ricardez-Vargas I; Pagliusi P; Provenzano C
    Opt Express; 2010 Mar; 18(6):6008-13. PubMed ID: 20389620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam.
    Zhao Y; Shapiro D; McGloin D; Chiu DT; Marchesini S
    Opt Express; 2009 Dec; 17(25):23316-22. PubMed ID: 20052258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.
    Tong L; Miljković VD; Käll M
    Nano Lett; 2010 Jan; 10(1):268-73. PubMed ID: 20030391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled rotation of birefringent particles in an optical trap.
    Wulff KD; Cole DG; Clark RL
    Appl Opt; 2008 Dec; 47(34):6428-33. PubMed ID: 19037371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and separation of chiral particles by focused circularly polarized vortex beams.
    Zhang Y; Li M; Yan S; Zhou Y; Gao W; Yao B
    J Opt Soc Am A Opt Image Sci Vis; 2022 Aug; 39(8):1371-1377. PubMed ID: 36215580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conical diffraction of linearly polarised light controls the angular position of a microscopic object.
    O'Dwyer DP; Phelan CF; Ballantine KE; Rakovich YP; Lunney JG; Donegan JF
    Opt Express; 2010 Dec; 18(26):27319-26. PubMed ID: 21197010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interparticle-Interaction-Mediated Anomalous Acceleration of Nanoparticles under Light-Field with Coupled Orbital and Spin Angular Momentum.
    Tamura M; Omatsu T; Tokonami S; Iida T
    Nano Lett; 2019 Aug; 19(8):4873-4878. PubMed ID: 31272154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive single particle method for characterizing rapid rotational and translational diffusion and aspect ratio of anisotropic nanoparticles and its application in immunoassays.
    Zhang B; Lan T; Huang X; Dong C; Ren J
    Anal Chem; 2013 Oct; 85(20):9433-8. PubMed ID: 24059451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically controlling spin and orbital angular momentum of a focused light beam in a uniaxial crystal.
    Zhu W; She W
    Opt Express; 2012 Nov; 20(23):25876-83. PubMed ID: 23187405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap.
    Yang Y; Brimicombe PD; Roberts NW; Dickinson MR; Osipov M; Gleeson HF
    Opt Express; 2008 May; 16(10):6877-82. PubMed ID: 18545390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving nanoparticles with Raman scattering.
    Ringler M; Klar TA; Schwemer A; Susha AS; Stehr J; Raschke G; Funk S; Borowski M; Nichtl A; Kürzinger K; Phillips RT; Feldmann J
    Nano Lett; 2007 Sep; 7(9):2753-7. PubMed ID: 17696403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tilt control in optical tweezers.
    Ichikawa M; Kubo K; Yoshikawa K; Kimura Y
    J Biomed Opt; 2008; 13(1):010503. PubMed ID: 18315348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled rotation of biological microscopic objects using optical line tweezers.
    Dasgupta R; Mohanty SK; Gupta PK
    Biotechnol Lett; 2003 Oct; 25(19):1625-8. PubMed ID: 14584918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Rotation and Thermometry of Laser Tweezed Silicon Nanorods.
    Karpinski P; Jones S; Šípová-Jungová H; Verre R; Käll M
    Nano Lett; 2020 Sep; 20(9):6494-6501. PubMed ID: 32787173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the position and orientation of single silver nanowires on a surface using structured optical fields.
    Yan Z; Sweet J; Jureller JE; Guffey MJ; Pelton M; Scherer NF
    ACS Nano; 2012 Sep; 6(9):8144-55. PubMed ID: 22900883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single gold trimers and 3D superstructures exhibit a polarization-independent SERS response.
    Steinigeweg D; Schütz M; Schlücker S
    Nanoscale; 2013 Jan; 5(1):110-3. PubMed ID: 23076725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.