These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23777517)

  • 1. A principled dimension-reduction method for the population density approach to modeling networks of neurons with synaptic dynamics.
    Ly C
    Neural Comput; 2013 Oct; 25(10):2682-708. PubMed ID: 23777517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size.
    Haskell E; Nykamp DQ; Tranchina D
    Network; 2001 May; 12(2):141-74. PubMed ID: 11405420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling.
    Ly C; Tranchina D
    Neural Comput; 2007 Aug; 19(8):2032-92. PubMed ID: 17571938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population density methods for stochastic neurons with realistic synaptic kinetics: firing rate dynamics and fast computational methods.
    Apfaltrer F; Ly C; Tranchina D
    Network; 2006 Dec; 17(4):373-418. PubMed ID: 17162461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex.
    Lang S; Dercksen VJ; Sakmann B; Oberlaender M
    Neural Netw; 2011 Nov; 24(9):998-1011. PubMed ID: 21775101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical physics approaches to neuronal network dynamics.
    Cai D; Tao L
    Sheng Li Xue Bao; 2011 Oct; 63(5):453-62. PubMed ID: 22002236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
    Tuckwell HC
    J Physiol Paris; 2006; 100(1-3):88-99. PubMed ID: 17064883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficient Population Density Method for Modeling Neural Networks with Synaptic Dynamics Manifesting Finite Relaxation Time and Short-Term Plasticity.
    Huang CH; Lin CK
    eNeuro; 2018; 5(6):. PubMed ID: 30662939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
    Geisler C; Brunel N; Wang XJ
    J Neurophysiol; 2005 Dec; 94(6):4344-61. PubMed ID: 16093332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach.
    Ly C; Tranchina D
    Neural Comput; 2009 Feb; 21(2):360-96. PubMed ID: 19431264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A population density approach that facilitates large-scale modeling of neural networks: extension to slow inhibitory synapses.
    Nykamp DQ; Tranchina D
    Neural Comput; 2001 Mar; 13(3):511-46. PubMed ID: 11244554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization of an excitatory integrate-and-fire neural network.
    Dumont G; Henry J
    Bull Math Biol; 2013 Apr; 75(4):629-48. PubMed ID: 23435645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling neuronal assemblies: theory and implementation.
    Eggert J; van Hemmen JL
    Neural Comput; 2001 Sep; 13(9):1923-74. PubMed ID: 11516352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How noise affects the synchronization properties of recurrent networks of inhibitory neurons.
    Brunel N; Hansel D
    Neural Comput; 2006 May; 18(5):1066-110. PubMed ID: 16595058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image segmentation by networks of spiking neurons.
    Buhmann JM; Lange T; Ramacher U
    Neural Comput; 2005 May; 17(5):1010-31. PubMed ID: 15829098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What the training of a neuronal network optimizes.
    Tabor Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031905. PubMed ID: 17930269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary timescales: firing rate and correlations.
    Moreno-Bote R; Parga N
    Neural Comput; 2010 Jun; 22(6):1528-72. PubMed ID: 20100073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.
    Ly C
    J Comput Neurosci; 2015 Dec; 39(3):311-27. PubMed ID: 26453404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between uncoupled conductance-based integrate-and-fire neurons due to common and synchronous presynaptic firing.
    Stroeve S; Gielen S
    Neural Comput; 2001 Sep; 13(9):2005-29. PubMed ID: 11516355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact simulation of integrate-and-fire models with synaptic conductances.
    Brette R
    Neural Comput; 2006 Aug; 18(8):2004-27. PubMed ID: 16771661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.