BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23777621)

  • 1. In situ deposition of hierarchical architecture assembly from Sn-filled CNTs for lithium-ion batteries.
    Hou X; Jiang H; Hu Y; Li Y; Huo J; Li C
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6672-7. PubMed ID: 23777621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coaxial Zn2GeO4@carbon nanowires directly grown on Cu foils as high-performance anodes for lithium ion batteries.
    Chen W; Lu L; Maloney S; Yang Y; Wang W
    Phys Chem Chem Phys; 2015 Feb; 17(7):5109-14. PubMed ID: 25600214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional SnSe
    Chen H; Jia BE; Lu X; Guo Y; Hu R; Khatoon R; Jiao L; Leng J; Zhang L; Lu J
    Chemistry; 2019 Jul; 25(42):9973-9983. PubMed ID: 31099094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage.
    Ding YL; Wu C; Kopold P; van Aken PA; Maier J; Yu Y
    Small; 2015 Dec; 11(45):6026-35. PubMed ID: 26456169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binder-free layered Ti3C2/CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries.
    Liu Y; Wang W; Ying Y; Wang Y; Peng X
    Dalton Trans; 2015 Apr; 44(16):7123-6. PubMed ID: 25799404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D graphene supported MoO2 for high performance binder-free lithium ion battery.
    Huang ZX; Wang Y; Zhu YG; Shi Y; Wong JI; Yang HY
    Nanoscale; 2014 Aug; 6(16):9839-45. PubMed ID: 25028917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries.
    Wang C; Wan W; Huang Y; Chen J; Zhou HH; Zhang XX
    Nanoscale; 2014 May; 6(10):5351-8. PubMed ID: 24699818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene networks anchored with sn@graphene as lithium ion battery anode.
    Qin J; He C; Zhao N; Wang Z; Shi C; Liu EZ; Li J
    ACS Nano; 2014 Feb; 8(2):1728-38. PubMed ID: 24400945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life.
    Huang X; Cui S; Chang J; Hallac PB; Fell CR; Luo Y; Metz B; Jiang J; Hurley PT; Chen J
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1490-3. PubMed ID: 25504807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-wrapped Fe3O4 nanoparticle films grown on nickel foam as binder-free anodes for high-rate and long-life lithium storage.
    Li D; Li X; Wang S; Zheng Y; Qiao L; He D
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):648-54. PubMed ID: 24320600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage.
    Wang B; Li S; Wu X; Liu J; Tian W
    Phys Chem Chem Phys; 2016 Jan; 18(2):908-15. PubMed ID: 26648554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries.
    Cao X; Shi Y; Shi W; Rui X; Yan Q; Kong J; Zhang H
    Small; 2013 Oct; 9(20):3433-8. PubMed ID: 23637090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries.
    Zhang N; Zhao Q; Han X; Yang J; Chen J
    Nanoscale; 2014 Mar; 6(5):2827-32. PubMed ID: 24468961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun Cu/Sn/C nanocomposite fiber anodes with superior usable lifetime for lithium- and sodium-ion batteries.
    Kim JC; Kim DW
    Chem Asian J; 2014 Nov; 9(11):3313-8. PubMed ID: 25225075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithiation of silicon nanoparticles confined in carbon nanotubes.
    Yu WJ; Liu C; Hou PX; Zhang L; Shan XY; Li F; Cheng HM
    ACS Nano; 2015 May; 9(5):5063-71. PubMed ID: 25869474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes.
    Li W; Wang X; Liu B; Luo S; Liu Z; Hou X; Xiang Q; Chen D; Shen G
    Chemistry; 2013 Jun; 19(26):8650-6. PubMed ID: 23657868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Electrochemical Properties of Tin-Iron-Carbon Nanocomposite as the Anode of Lithium-Ion Batteries.
    Yang X; Zhang R; Bie X; Wang C; Li M; Chen N; Wei Y; Chen G; Du F
    Chem Asian J; 2015 Nov; 10(11):2460-6. PubMed ID: 26206484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities.
    Zou Y; Wang Y
    ACS Nano; 2011 Oct; 5(10):8108-14. PubMed ID: 21939228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.