These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23777621)

  • 21. Hierarchical CoO/MnCo
    Ni L; Tang W; Liu X; Zhang N; Wang J; Liang S; Ma R; Qiu G
    Dalton Trans; 2018 Mar; 47(11):3775-3784. PubMed ID: 29445789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries.
    Wang H; Lu X; Li L; Li B; Cao D; Wu Q; Li Z; Yang G; Guo B; Niu C
    Nanoscale; 2016 Apr; 8(14):7595-603. PubMed ID: 26984273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Conductive Binder for High-Performance Sn Electrodes in Lithium-Ion Batteries.
    Zhao Y; Yang L; Liu D; Hu J; Han L; Wang Z; Pan F
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):1672-1677. PubMed ID: 29266916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries.
    Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL
    Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superior-capacity binder-free anode electrode for lithium-ion batteries: Co
    Li Q; Feng Y; Wang P; Che R
    Nanoscale; 2019 Mar; 11(11):5080-5093. PubMed ID: 30839963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Facile Electrophoretic Deposition Route to the Fe
    Yang Y; Li J; Chen D; Zhao J
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26730-26739. PubMed ID: 27622860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition.
    Yu M; Wang A; Wang Y; Li C; Shi G
    Nanoscale; 2014 Oct; 6(19):11419-24. PubMed ID: 25148141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries.
    Li H; Shen L; Pang G; Fang S; Luo H; Yang K; Zhang X
    Nanoscale; 2015 Jan; 7(2):619-24. PubMed ID: 25423342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pipe-Wire TiO
    Mao M; Yan F; Cui C; Ma J; Zhang M; Wang T; Wang C
    Nano Lett; 2017 Jun; 17(6):3830-3836. PubMed ID: 28475340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intermetallic SnSb nanodots embedded in carbon nanotubes reinforced nanofabric electrodes with high reversibility and rate capability for flexible Li-ion batteries.
    Chen R; Xue X; Hu Y; Kong W; Lin H; Chen T; Jin Z
    Nanoscale; 2019 Jul; 11(28):13282-13288. PubMed ID: 31287474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineered Si sandwich electrode: Si nanoparticles/graphite sheet hybrid on ni foam for next-generation high-performance lithium-ion batteries.
    Gao C; Zhao H; Lv P; Zhang T; Xia Q; Wang J
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1693-8. PubMed ID: 25561398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafine Mo-doped SnO
    Chen Y; Ge D; Zhang J; Chu R; Zheng J; Wu C; Zeng Y; Zhang Y; Guo H
    Nanoscale; 2018 Sep; 10(36):17378-17387. PubMed ID: 30203824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrene-Anderson-Modified CNTs as Anode Materials for Lithium-Ion Batteries.
    Huang L; Hu J; Ji Y; Streb C; Song YF
    Chemistry; 2015 Dec; 21(51):18799-804. PubMed ID: 26538031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries.
    Liao JY; Xiao X; Higgins D; Lui G; Chen Z
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):568-74. PubMed ID: 24328159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries.
    Wu X; Li S; Wang B; Liu J; Yu M
    Phys Chem Chem Phys; 2016 Feb; 18(6):4505-12. PubMed ID: 26796603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ preparation of 3D graphene aerogels@hierarchical Fe3O4 nanoclusters as high rate and long cycle anode materials for lithium ion batteries.
    Fan L; Li B; Rooney DW; Zhang N; Sun K
    Chem Commun (Camb); 2015 Jan; 51(9):1597-600. PubMed ID: 25502738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries.
    Liu Y; Wang W; Gu L; Wang Y; Ying Y; Mao Y; Sun L; Peng X
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9850-5. PubMed ID: 24010720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.