BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23777865)

  • 1. Expansion of nanosized pores in low-crystallinity nanoparticle-assembled plates via a thermally induced increase in solid-state density.
    Okada M; Fujiwara K; Uehira M; Matsumoto N; Takeda S
    J Colloid Interface Sci; 2013 Sep; 405():58-63. PubMed ID: 23777865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-temperature synthesis of nanoparticle-assembled, transparent, and low-crystallized hydroxyapatite blocks.
    Okada M; Furuzono T
    J Colloid Interface Sci; 2011 Aug; 360(2):457-62. PubMed ID: 21570086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials.
    Fujii S; Okada M; Furuzono T
    J Colloid Interface Sci; 2007 Nov; 315(1):287-96. PubMed ID: 17681523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-sized ceramic particles of hydroxyapatite calcined with an anti-sintering agent.
    Okada M; Furuzono T
    J Nanosci Nanotechnol; 2007 Mar; 7(3):848-51. PubMed ID: 17450845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells.
    Dey S; Das M; Balla VK
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():336-9. PubMed ID: 24863233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of low-crystallinity hydroxyapatite foam based on the setting reaction of alpha-tricalcium phosphate foam.
    Karashima S; Takeuchi A; Matsuya S; Udoh K; Koyano K; Ishikawa K
    J Biomed Mater Res A; 2009 Mar; 88(3):628-33. PubMed ID: 18314899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method.
    Suchanek WL; Byrappa K; Shuk P; Riman RE; Janas VF; TenHuisen KS
    Biomaterials; 2004 Aug; 25(19):4647-57. PubMed ID: 15120511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel strategy for preparing nanoporous biphasic calcium phosphate of controlled composition via a modified nanoparticle-assembly method.
    Fujiwara K; Okada M; Takeda S; Matsumoto N
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():259-66. PubMed ID: 24411377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.
    Gopi D; Indira J; Kavitha L; Sekar M; Mudali UK
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():131-4. PubMed ID: 22472129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface and porosity of nanocrystalline boehmite xerogels.
    Alphonse P; Courty M
    J Colloid Interface Sci; 2005 Oct; 290(1):208-19. PubMed ID: 15936767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry.
    Dhand V; Rhee KY; Park SJ
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():152-9. PubMed ID: 24433898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect healing of self-assembled SiO2 layer by heat-treatment and multi-coating.
    O YT; Shin DC
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3438-41. PubMed ID: 17252784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dilute gelatine on the ultrasonic thermally assisted synthesis of nano hydroxyapatite.
    Brundavanam RK; Jiang ZT; Chapman P; Le XT; Mondinos N; Fawcett D; Poinern GE
    Ultrason Sonochem; 2011 May; 18(3):697-703. PubMed ID: 21168355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyapatite-armored poly(ε-caprolactone) microspheres and hydroxyapatite microcapsules fabricated via a Pickering emulsion route.
    Fujii S; Okada M; Nishimura T; Maeda H; Sugimoto T; Hamasaki H; Furuzono T; Nakamura Y
    J Colloid Interface Sci; 2012 May; 374(1):1-8. PubMed ID: 22364710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of precursor solvent properties on matrix crystallinity and drug release rates from nanoparticle aerosol lipid matrices.
    Pawar AA; Chen DR; Venkataraman C
    Int J Pharm; 2012 Jul; 430(1-2):228-37. PubMed ID: 22469694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous microgels for the growth of hydroxyapatite nanocrystals.
    Schachschal S; Pich A; Adler HJ
    Langmuir; 2008 May; 24(9):5129-34. PubMed ID: 18363417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species.
    Martins MA; Santos C; Almeida MM; Costa ME
    J Colloid Interface Sci; 2008 Feb; 318(2):210-6. PubMed ID: 17996882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres.
    Teng S; Chen L; Guo Y; Shi J
    J Inorg Biochem; 2007 Apr; 101(4):686-91. PubMed ID: 17316810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.