These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23778457)

  • 21. Stomatal factors and vulnerability of stem xylem to cavitation in poplars.
    Arango-Velez A; Zwiazek JJ; Thomas BR; Tyree MT
    Physiol Plant; 2011 Oct; 143(2):154-65. PubMed ID: 21623799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional xylem anatomy of aspen exhibits greater change due to insect defoliation than to drought.
    Hillabrand RM; Lieffers VJ; Hogg EH; Martínez-Sancho E; Menzel A; Hacke UG
    Tree Physiol; 2019 Jan; 39(1):45-54. PubMed ID: 29982833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation.
    Yin XH; Sterck F; Hao GY
    New Phytol; 2018 Jul; 219(2):530-541. PubMed ID: 29682759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
    Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S
    Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interspecific variation in xylem vulnerability to cavitation among tropical tree and shrub species.
    Lopez OR; Kursar TA; Cochard H; Tyree MT
    Tree Physiol; 2005 Dec; 25(12):1553-62. PubMed ID: 16137941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Xylem Embolism Spreads by Single-Conduit Events in Three Dry Forest Angiosperm Stems.
    Johnson KM; Brodersen C; Carins-Murphy MR; Choat B; Brodribb TJ
    Plant Physiol; 2020 Sep; 184(1):212-222. PubMed ID: 32581116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xylem resistance to cavitation increases during summer in Pinus halepensis.
    Feng F; Wagner Y; Klein T; Hochberg U
    Plant Cell Environ; 2023 Jun; 46(6):1849-1859. PubMed ID: 36793149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana.
    Beikircher B; Mayr S
    Tree Physiol; 2009 Jun; 29(6):765-75. PubMed ID: 19364707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasonic emissions from conifer xylem exposed to repeated freezing.
    Mayr S; Zublasing V
    J Plant Physiol; 2010 Jan; 167(1):34-40. PubMed ID: 19692146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response pattern of amino compounds in phloem and xylem of trees to soil drought depends on drought intensity and root symbiosis.
    Liu XP; Gong CM; Fan YY; Eiblmeier M; Zhao Z; Han G; Rennenberg H
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():101-8. PubMed ID: 22845058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: implications for whole-plant water use efficiency and resistance to drought.
    Domec JC; Smith DD; McCulloh KA
    Plant Cell Environ; 2017 Jun; 40(6):921-937. PubMed ID: 27739596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How reliable are methods to assess xylem vulnerability to cavitation? The issue of 'open vessel' artifact in oaks.
    Martin-StPaul NK; Longepierre D; Huc R; Delzon S; Burlett R; Joffre R; Rambal S; Cochard H
    Tree Physiol; 2014 Aug; 34(8):894-905. PubMed ID: 25074860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct xylem responses to acute vs prolonged drought in pine trees.
    Guérin M; von Arx G; Martin-Benito D; Andreu-Hayles L; Griffin KL; McDowell NG; Pockman W; Gentine P
    Tree Physiol; 2020 May; 40(5):605-620. PubMed ID: 31976523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Freeze/Thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation.
    Sevanto S; Holbrook NM; Ball MC
    Front Plant Sci; 2012; 3():107. PubMed ID: 22685446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.
    Hajek P; Leuschner C; Hertel D; Delzon S; Schuldt B
    Tree Physiol; 2014 Jul; 34(7):744-56. PubMed ID: 25009155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Narrow vessels cavitate first during a simulated drought in Eucalyptus camaldulensis.
    Barigah TS; Gyenge JE; Barreto F; Rozenberg P; Fernández ME
    Physiol Plant; 2021 Dec; 173(4):2081-2090. PubMed ID: 34523145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Propagating ice front induces gas bursts and ultrasonic acoustic emissions from freezing xylem.
    Lintunen A; Losso A; Aalto J; Chan T; Hölttä T; Mayr S
    Tree Physiol; 2020 Feb; 40(2):170-182. PubMed ID: 31860711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elevational trends in hydraulic efficiency and safety of Pinus cembra roots.
    Losso A; Nardini A; Nolf M; Mayr S
    Oecologia; 2016 Apr; 180(4):1091-102. PubMed ID: 26678990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity.
    Kasuga J; Hashidoko Y; Nishioka A; Yoshiba M; Arakawa K; Fujikawa S
    Plant Cell Environ; 2008 Sep; 31(9):1335-48. PubMed ID: 18518920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.