These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 237787)

  • 21. Enzymatic release of iron from sideramines in fungi. NADH:sideramine oxidoreductase in Neurospora crassa.
    Ernst JF; Winkelmann G
    Biochim Biophys Acta; 1977 Nov; 500(1):27-41. PubMed ID: 144535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstruction of an enzymic system of lipid peroxidation with properties of an intact microsomal system.
    Pospelova LN; Pokrovsky AG; Mishin VM; Lyakhovich VV
    FEBS Lett; 1977 Mar; 74(2):225-8. PubMed ID: 403092
    [No Abstract]   [Full Text] [Related]  

  • 23. Loss of immunoreactivity of human serum parathyroid hormone by the action of rat kidney enzyme, preferentially hydrolyzing parathyroid hormone.
    Fujita T; Orimo H; Oata M; Okano K; Yoshikawa M
    Horm Res; 1973; 4(4):213-8. PubMed ID: 4201258
    [No Abstract]   [Full Text] [Related]  

  • 24. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic hydrolysis of 125I-labeled parathyroid hormone.
    Fujita T; Ohata M; Orimo H; Yoshikawa M; Maruyama M
    Endocrinol Jpn; 1969 Jun; 16(3):383-9. PubMed ID: 4980688
    [No Abstract]   [Full Text] [Related]  

  • 26. Studies on high molecular weight modifiers of the nonhyperbolic V versus (S) curves of DT-diaphorase.
    Hollander PM; Gatt S
    FEBS Lett; 1975 Jul; 55(1):113-6. PubMed ID: 166879
    [No Abstract]   [Full Text] [Related]  

  • 27. [Proceedings: Influence of phospholipids and membrane structure on enzyme activity of NADH: mondehydroascorbate oxidoreductase].
    Schulze HU
    Z Klin Chem Klin Biochem; 1975 Aug; 13(8):369-70. PubMed ID: 1216963
    [No Abstract]   [Full Text] [Related]  

  • 28. The mobilization of ferritin iron by liver cytosol. A comparison of xanthine and NADH as reducing substrates.
    Topham R; Goger M; Pearce K; Schultz P
    Biochem J; 1989 Jul; 261(1):137-43. PubMed ID: 2775199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group.
    Petitdemange H; Cherrier C; Raval R; Gay R
    Biochim Biophys Acta; 1976 Feb; 421(2):334-7. PubMed ID: 3218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Presence of a gelatin-specific proteinase and its latent form in human leucocytes.
    Sopata I; Dancewicz AM
    Biochim Biophys Acta; 1974 Dec; 370(2):510-23. PubMed ID: 4216367
    [No Abstract]   [Full Text] [Related]  

  • 31. The distinct enzymic lipid peroxidation systems from liver microsomes in the presence or ADP--or EDTA--iron complexes.
    Lyakhovich VV; Pospelova LN; Mishin VM; Pokrovsky AG
    FEBS Lett; 1976 Dec; 71(2):303-5. PubMed ID: 187447
    [No Abstract]   [Full Text] [Related]  

  • 32. Cofactor engineering to regulate NAD
    Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M
    Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies of the control of luminescence in Beneckea harveyi: properties of the NADH and NADPH:FMN oxidoreductases.
    Jablonski E; DeLuca M
    Biochemistry; 1978 Feb; 17(4):672-8. PubMed ID: 23827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Kinetics of NADH oxidation of NAD+ reduction by mitochondrial complex I].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Sep; 56(9):1676-87. PubMed ID: 1747428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of cortisone 5 beta-reductase as delta 4-3-ketosteroid 5 beta-reductase.
    Furuebisu M; Deguchi S; Okuda K
    Biochim Biophys Acta; 1987 Mar; 912(1):110-4. PubMed ID: 3828348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and properties of the NADH reductase component of alkene monooxygenase from Mycobacterium strain E3.
    Weber FJ; van Berkel WJ; Hartmans S; de Bont JA
    J Bacteriol; 1992 May; 174(10):3275-81. PubMed ID: 1315734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and characterization of 2-enoyl-CoA reductase of Mycobacterium smegmatis.
    Shimakata T; Kusaka T
    J Biochem; 1981 Apr; 89(4):1075-80. PubMed ID: 7251572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron release from ferrisiderophores. A multi-step mechanism involving a NADH/FMN oxidoreductase and a chemical reduction by FMNH2.
    Hallé F; Meyer JM
    Eur J Biochem; 1992 Oct; 209(2):621-7. PubMed ID: 1425668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study of the NADH and NADPH-ferredoxin oxidoreductase activities in Clostridium acetobutylicum].
    Petitdemange H; Cherrier C; Bengone JM; Gay R
    Can J Microbiol; 1977 Feb; 23(2):152-60. PubMed ID: 13922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 5beta-cholestane-3alpha, 27-diol: NAD+ oxidoreductase and 3alpha-hydroxy-5beta-cholestan-27-al; NAD+ oxidoreductase in rat liver extract.
    Tsukiai S
    Hiroshima J Med Sci; 1981 Mar; 30(1):1-7. PubMed ID: 6792166
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.