BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 23778963)

  • 1. Biosensing MAPs as "roadblocks": kinesin-based functional analysis of tau protein isoforms and mutants using suspended microtubules (sMTs).
    Tarhan MC; Orazov Y; Yokokawa R; Karsten SL; Fujita H
    Lab Chip; 2013 Aug; 13(16):3217-24. PubMed ID: 23778963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tau proteins harboring neurodegeneration-linked mutations impair kinesin translocation in vitro.
    Yu D; LaPointe NE; Guzman E; Pessino V; Wilson L; Feinstein SC; Valentine MT
    J Alzheimers Dis; 2014; 39(2):301-14. PubMed ID: 24150109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip microtubule gliding assay for parallel measurement of tau protein species.
    Subramaniyan Parimalam S; Tarhan MC; Karsten SL; Fujita H; Shintaku H; Kotera H; Yokokawa R
    Lab Chip; 2016 Apr; 16(9):1691-7. PubMed ID: 27056640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinesin's neck-linker determines its ability to navigate obstacles on the microtubule surface.
    Hoeprich GJ; Thompson AR; McVicker DP; Hancock WO; Berger CL
    Biophys J; 2014 Apr; 106(8):1691-700. PubMed ID: 24739168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of dynein and kinesin motor proteins by tau.
    Dixit R; Ross JL; Goldman YE; Holzbaur EL
    Science; 2008 Feb; 319(5866):1086-9. PubMed ID: 18202255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suspended microtubules demonstrate high sensitivity and low experimental variability in kinesin bead assay.
    Tarhan MC; Orazov Y; Yokokawa R; Karsten SL; Fujita H
    Analyst; 2013 Mar; 138(6):1653-6. PubMed ID: 23376984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport.
    McVicker DP; Chrin LR; Berger CL
    J Biol Chem; 2011 Dec; 286(50):42873-80. PubMed ID: 22039058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The axonal transport motor kinesin-2 navigates microtubule obstacles via protofilament switching.
    Hoeprich GJ; Mickolajczyk KJ; Nelson SR; Hancock WO; Berger CL
    Traffic; 2017 May; 18(5):304-314. PubMed ID: 28267259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tau proteins bind to kinesin and modulate its activation by microtubules.
    Jancsik V; Filliol D; Rendon A
    Neurobiology (Bp); 1996; 4(4):417-29. PubMed ID: 9200133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity.
    LaPointe NE; Morfini G; Pigino G; Gaisina IN; Kozikowski AP; Binder LI; Brady ST
    J Neurosci Res; 2009 Feb; 87(2):440-51. PubMed ID: 18798283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tau binding to microtubules does not directly affect microtubule-based vesicle motility.
    Morfini G; Pigino G; Mizuno N; Kikkawa M; Brady ST
    J Neurosci Res; 2007 Sep; 85(12):2620-30. PubMed ID: 17265463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the "roadblock" effect in kinesin-based transport.
    Schmidt C; Kim B; Grabner H; Ries J; Kulomaa M; Vogel V
    Nano Lett; 2012 Jul; 12(7):3466-71. PubMed ID: 22655595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The genetics of dementias. Part 1: Molecular basis of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17)].
    Kowalska A
    Postepy Hig Med Dosw (Online); 2009 Jun; 63():278-86. PubMed ID: 19535823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule investigation of the interference between kinesin, tau and MAP2c.
    Seitz A; Kojima H; Oiwa K; Mandelkow EM; Song YH; Mandelkow E
    EMBO J; 2002 Sep; 21(18):4896-905. PubMed ID: 12234929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule formation and kinesin-driven microtubule gliding in vitro in the presence of lipopolysaccharide.
    Böhm KJ; Russwurm S; Ghaleb N; Reinhart K; Unger E
    Cell Biol Int; 1999; 23(6):431-7. PubMed ID: 10623422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-motor based transport and its regulation by Tau.
    Vershinin M; Carter BC; Razafsky DS; King SJ; Gross SP
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):87-92. PubMed ID: 17190808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration.
    Bunker JM; Wilson L; Jordan MA; Feinstein SC
    Mol Biol Cell; 2004 Jun; 15(6):2720-8. PubMed ID: 15020716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and microtubule binding properties of tau mutants of frontotemporal dementias.
    Fischer D; Mukrasch MD; von Bergen M; Klos-Witkowska A; Biernat J; Griesinger C; Mandelkow E; Zweckstetter M
    Biochemistry; 2007 Mar; 46(10):2574-82. PubMed ID: 17297915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glu415 in the alpha-tubulins plays a key role in stabilizing the microtubule-ADP-kinesin complexes.
    Gaspar I; Szabad J
    J Cell Sci; 2009 Aug; 122(Pt 16):2857-65. PubMed ID: 19622631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new look at the microtubule binding patterns of dimeric kinesins.
    Hoenger A; Thormählen M; Diaz-Avalos R; Doerhoefer M; Goldie KN; Müller J; Mandelkow E
    J Mol Biol; 2000 Apr; 297(5):1087-103. PubMed ID: 10764575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.