These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23779103)

  • 1. Excitation energies of a water-bridged twisted retinal structure in the bacteriorhodopsin proton pump: a theoretical investigation.
    Wolter T; Welke K; Phatak P; Bondar AN; Elstner M
    Phys Chem Chem Phys; 2013 Aug; 15(30):12582-90. PubMed ID: 23779103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of the proton translocation from Asp96 to schiff base in bacteriorhodopsin.
    Sato Y; Hata M; Neya S; Hoshino T
    J Phys Chem B; 2006 Nov; 110(45):22804-12. PubMed ID: 17092031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions.
    Bondar AN; Baudry J; Suhai S; Fischer S; Smith JC
    J Phys Chem B; 2008 Nov; 112(47):14729-41. PubMed ID: 18973373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements.
    Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M
    J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of the opsin shift of deprotonated retinal schiff base in the M state of bacteriorhodopsin.
    Fujimoto KJ; Asai K; Hasegawa JY
    Phys Chem Chem Phys; 2010 Oct; 12(40):13107-16. PubMed ID: 20830417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of proton transfer in bacteriorhodopsin.
    Lee YS; Krauss M
    J Am Chem Soc; 2004 Feb; 126(7):2225-30. PubMed ID: 14971958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the residues on the excitation energies of protonated Schiff base of retinal (PSBR) in bR: a TD-DFT study.
    Tachikawa H; Kawabata H
    J Photochem Photobiol B; 2005 Jun; 79(3):191-5. PubMed ID: 15896645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model.
    Tanimoto T; Furutani Y; Kandori H
    Biochemistry; 2003 Mar; 42(8):2300-6. PubMed ID: 12600197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Key role of electrostatic interactions in bacteriorhodopsin proton transfer.
    Bondar AN; Fischer S; Smith JC; Elstner M; Suhai S
    J Am Chem Soc; 2004 Nov; 126(44):14668-77. PubMed ID: 15521787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism by which untwisting of retinal leads to productive bacteriorhodopsin photocycle states.
    Wolter T; Elstner M; Fischer S; Smith JC; Bondar AN
    J Phys Chem B; 2015 Feb; 119(6):2229-40. PubMed ID: 25196390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the mechanism of the proton transport in bacteriorhodopsin: the importance of the water molecule.
    Murata K; Fujii Y; Enomoto N; Hata M; Hoshino T; Tsuda M
    Biophys J; 2000 Aug; 79(2):982-91. PubMed ID: 10920028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of proton transfers in Bacteriorhodopsin bR and M intermediates.
    Song Y; Mao J; Gunner MR
    Biochemistry; 2003 Aug; 42(33):9875-88. PubMed ID: 12924936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Photochemical properties of a bacteriorhodopsin analogue containing 13-desmethyl-13-(trifluoromethyl)retinal].
    Lukashev EP; Pronskaia NA
    Biofizika; 2006; 51(3):446-53. PubMed ID: 16808343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and energetic determinants of primary proton transfer in bacteriorhodopsin.
    Bondar AN; Smith JC; Fischer S
    Photochem Photobiol Sci; 2006 Jun; 5(6):547-52. PubMed ID: 16761083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein.
    Kandt C; Gerwert K; Schlitter J
    Proteins; 2005 Feb; 58(3):528-37. PubMed ID: 15609339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hydrogen-bond network in energy storage of bacteriorhodopsin's light-driven proton pump revealed by ab initio normal-mode analysis.
    Hayashi S; Tajkhorshid E; Kandori H; Schulten K
    J Am Chem Soc; 2004 Sep; 126(34):10516-7. PubMed ID: 15327290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin.
    Sass HJ; Büldt G; Gessenich R; Hehn D; Neff D; Schlesinger R; Berendzen J; Ormos P
    Nature; 2000 Aug; 406(6796):649-53. PubMed ID: 10949308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water molecules in the schiff base region of bacteriorhodopsin.
    Shibata M; Tanimoto T; Kandori H
    J Am Chem Soc; 2003 Nov; 125(44):13312-3. PubMed ID: 14582999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation of the M intermediates of bacteriorhodopsin.
    Tóth-Boconádi R; Dér A; Fábián L; Taneva SG; Keszthelyi L
    Photochem Photobiol; 2009; 85(2):609-13. PubMed ID: 19222799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate.
    Maeda A; Gennis RB; Balashov SP; Ebrey TG
    Biochemistry; 2005 Apr; 44(16):5960-8. PubMed ID: 15835885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.