BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23779148)

  • 1. Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments.
    Sarotti AM
    Org Biomol Chem; 2013 Aug; 11(29):4847-59. PubMed ID: 23779148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure validation of natural products by quantum-mechanical GIAO calculations of 13C NMR chemical shifts.
    Barone G; Gomez-Paloma L; Duca D; Silvestri A; Riccio R; Bifulco G
    Chemistry; 2002 Jul; 8(14):3233-9. PubMed ID: 12203353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-standard approach for GIAO (13)C NMR calculations.
    Sarotti AM; Pellegrinet SC
    J Org Chem; 2009 Oct; 74(19):7254-60. PubMed ID: 19725561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computationally feasible quantum chemical model for 13C NMR chemical shifts of PCB-derived carboxylic acids.
    Kolehmainen E; Tuppurainen K; Lanina SA; Sievänen E; Laihia K; Boyarskiy VP; Nikiforov VA; Zhesko TE
    Chemosphere; 2006 Jan; 62(3):368-74. PubMed ID: 15992857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation.
    Smith SG; Goodman JM
    J Org Chem; 2009 Jun; 74(12):4597-607. PubMed ID: 19459674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability.
    Smith SG; Goodman JM
    J Am Chem Soc; 2010 Sep; 132(37):12946-59. PubMed ID: 20795713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel methods of automated structure elucidation based on 13C NMR spectroscopy.
    Meiler J; Köck M
    Magn Reson Chem; 2004 Dec; 42(12):1042-5. PubMed ID: 15470690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products.
    Cimino P; Gomez-Paloma L; Duca D; Riccio R; Bifulco G
    Magn Reson Chem; 2004 Oct; 42 Spec no():S26-33. PubMed ID: 15366038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the multi-standard methodology for calculating 1H NMR chemical shifts.
    Sarotti AM; Pellegrinet SC
    J Org Chem; 2012 Jul; 77(14):6059-65. PubMed ID: 22713105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure revision of hassananes with use of quantum mechanical 13C NMR chemical shifts and UV-vis absorption spectra.
    Yang J; Huang SX; Zhao QS
    J Phys Chem A; 2008 Nov; 112(47):12132-9. PubMed ID: 18983131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AM1 parameters for the prediction of 1H and 13C NMR chemical shifts in proteins.
    Williams DE; Peters MB; Wang B; Roitberg AE; Merz KM
    J Phys Chem A; 2009 Oct; 113(43):11550-9. PubMed ID: 19799435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of 13C nuclear magnetic resonance spectra of lignin compounds using principal component analysis and artificial neural networks.
    Jalali-Heravi M; Masoum S; Shahbazikhah P
    J Magn Reson; 2004 Nov; 171(1):176-85. PubMed ID: 15504698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of succinylacetone, an unsymmetrical beta-diketone, as studied by 13C NMR and GIAO-DFT calculations.
    Bal D; Kraska-Dziadecka A; Gryff-Keller A
    J Org Chem; 2009 Nov; 74(22):8604-9. PubMed ID: 19839628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical and DFT GIAO quantum-mechanical methods of (13)C chemical shifts prediction: competitors or collaborators?
    Elyashberg M; Blinov K; Smurnyy Y; Churanova T; Williams A
    Magn Reson Chem; 2010 Mar; 48(3):219-29. PubMed ID: 20108257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determination of complex natural products by quantum mechanical calculations of (13)C NMR chemical shifts: development of a parameterized protocol for terpenes.
    de Albuquerque AC; Ribeiro DJ; de Amorim MB
    J Mol Model; 2016 Aug; 22(8):183. PubMed ID: 27424297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GIAO DFT 13C/15N chemical shifts in regioisomeric structure determination of fused pyrazoles.
    Chimichi S; Boccalini M; Matteucci A; Kharlamov SV; Latypov SK; Sinyashin OG
    Magn Reson Chem; 2010 Aug; 48(8):607-13. PubMed ID: 20589725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GIAO/DFT evaluation of 13C NMR chemical shifts of selected acetals based on DFT optimized geometries.
    Migda W; Rys B
    Magn Reson Chem; 2004 May; 42(5):459-66. PubMed ID: 15095382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared and NMR spectra, tautomerism, vibrational assignment, normal coordinate analysis, and quantum mechanical calculations of 4-amino-5-pyrimidinecarbonitrile.
    Afifi MS; Farag RS; Shaaban IA; Wilson LD; Zoghaib WM; Mohamed TA
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():277-89. PubMed ID: 23669406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum chemical and nuclear magnetic resonance spectral studies on molecular properties and electronic structure of berberine and berberrubine.
    Tripathi AN; Chauhan L; Thankachan PP; Barthwal R
    Magn Reson Chem; 2007 Aug; 45(8):647-55. PubMed ID: 17559166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GIAO C-H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward.
    Zanardi MM; Sarotti AM
    J Org Chem; 2015 Oct; 80(19):9371-8. PubMed ID: 26339863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.