These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23780514)

  • 1. Estimation of human core temperature from sequential heart rate observations.
    Buller MJ; Tharion WJ; Cheuvront SN; Montain SJ; Kenefick RW; Castellani J; Latzka WA; Roberts WS; Richter M; Jenkins OC; Hoyt RW
    Physiol Meas; 2013 Jul; 34(7):781-98. PubMed ID: 23780514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat stress in protective clothing: validation of a computer model and the heat-humidity index (HHI).
    Antuñano MJ; Nunneley SA
    Aviat Space Environ Med; 1992 Dec; 63(12):1087-92. PubMed ID: 1456921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of endurance training and heat acclimation on psychological strain in exercising men wearing protective clothing.
    Aoyagi Y; McLellan TM; Shephard RJ
    Ergonomics; 1998 Mar; 41(3):328-57. PubMed ID: 9520629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of a noninvasive estimation of deep body temperature when wearing personal protective equipment during exercise and recovery.
    Hunt AP; Buller MJ; Maley MJ; Costello JT; Stewart IB
    Mil Med Res; 2019 Jun; 6(1):20. PubMed ID: 31196190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross validation of USARIEM heat strain prediction models. U.S. ARMY Research Institute of Environmental Medicine.
    Cadarette BS; Montain SJ; Kolka MA; Stroschein L; Matthew W; Sawka MN
    Aviat Space Environ Med; 1999 Oct; 70(10):996-1006. PubMed ID: 10519479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal convergence fails to predict heat tolerance limits.
    Nunneley SA; Antuñano MJ; Bomalaski SH
    Aviat Space Environ Med; 1992 Oct; 63(10):886-90. PubMed ID: 1417651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat strain while wearing the current Canadian or a new hot-weather French NBC protective clothing ensemble.
    McLellan TM
    Aviat Space Environ Med; 1996 Nov; 67(11):1057-62. PubMed ID: 8908344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate.
    Montain SJ; Sawka MN; Cadarette BS; Quigley MD; McKay JM
    J Appl Physiol (1985); 1994 Jul; 77(1):216-22. PubMed ID: 7961236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat Strain Decision Aid (HSDA) accurately predicts individual-based core body temperature rise while wearing chemical protective clothing.
    Potter AW; Hunt AP; Cadarette BS; Fogarty A; Srinivasan S; Santee WR; Blanchard LA; Looney DP
    Comput Biol Med; 2019 Apr; 107():131-136. PubMed ID: 30802695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of thermal imagery for estimation of core body temperature during precooling, exertion, and recovery in wildland firefighter protective clothing.
    Bourlai T; Pryor RR; Suyama J; Reis SE; Hostler D
    Prehosp Emerg Care; 2012; 16(3):390-9. PubMed ID: 22510022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat strain attenuation while wearing NBC clothing: dry-ice vest compared to water spray.
    Heled Y; Epstein Y; Moran DS
    Aviat Space Environ Med; 2004 May; 75(5):391-6. PubMed ID: 15152890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments?
    Wang F; Kuklane K; Gao C; Holmér I
    Physiol Meas; 2011 Feb; 32(2):239-49. PubMed ID: 21178244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat strain during at-sea helicopter operations and the effect of passive microclimate cooling.
    Banta GR; Braun DE
    Aviat Space Environ Med; 1992 Oct; 63(10):881-5. PubMed ID: 1417650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating core temperature with external devices after exertional heat stress in thermal protective clothing.
    Pryor RR; Seitz JR; Morley J; Suyama J; Guyette FX; Reis SE; Hostler D
    Prehosp Emerg Care; 2012; 16(1):136-41. PubMed ID: 21939375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Work performance at 40 degrees C with Canadian Forces biological and chemical protective clothing.
    McLellan TM
    Aviat Space Environ Med; 1993 Dec; 64(12):1094-100. PubMed ID: 8291988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice cooling vest on tolerance for exercise under uncompensable heat stress.
    Kenny GP; Schissler AR; Stapleton J; Piamonte M; Binder K; Lynn A; Lan CQ; Hardcastle SG
    J Occup Environ Hyg; 2011 Aug; 8(8):484-91. PubMed ID: 21756138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologic tolerance to uncompensable heat: intermittent exercise, field vs laboratory.
    Sawka MN; Latzka WA; Montain SJ; Cadarette BS; Kolka MA; Kraning KK; Gonzalez RR
    Med Sci Sports Exerc; 2001 Mar; 33(3):422-30. PubMed ID: 11252069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling physiological responses to military scenarios: initial core temperature and downhill work.
    Yokota M; Berglund LG; Santee WR; Buller MJ; Hoyt RW
    Aviat Space Environ Med; 2005 May; 76(5):475-80. PubMed ID: 15892546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimising the acquisition and retention of heat acclimation.
    Daanen HA; Jonkman AG; Layden JD; Linnane DM; Weller AS
    Int J Sports Med; 2011 Nov; 32(11):822-8. PubMed ID: 22052034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological strains in hot-humid conditions while wearing disposable protective clothing commonly used by the asbestos removal industry.
    Ohnaka T; Tochihara Y; Muramatsu T
    Ergonomics; 1993 Oct; 36(10):1241-50. PubMed ID: 8223412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.