These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23780669)

  • 41. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles.
    Tong L; Zhu T; Liu Z
    Chem Soc Rev; 2011 Mar; 40(3):1296-304. PubMed ID: 21125088
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface-enhanced Raman spectroscopy (SERS): progress and trends.
    Cialla D; März A; Böhme R; Theil F; Weber K; Schmitt M; Popp J
    Anal Bioanal Chem; 2012 Apr; 403(1):27-54. PubMed ID: 22205182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS.
    Chen A; DePrince AE; Demortière A; Joshi-Imre A; Shevchenko EV; Gray SK; Welp U; Vlasko-Vlasov VK
    Small; 2011 Aug; 7(16):2365-71. PubMed ID: 21630447
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface-enhanced Raman spectroscopy.
    Stiles PL; Dieringer JA; Shah NC; Van Duyne RP
    Annu Rev Anal Chem (Palo Alto Calif); 2008; 1():601-26. PubMed ID: 20636091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots.
    Shegai T; Vaskevich A; Rubinstein I; Haran G
    J Am Chem Soc; 2009 Oct; 131(40):14390-8. PubMed ID: 19807184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism.
    Itoh T; Yamamoto YS
    Analyst; 2016 Aug; 141(17):5000-9. PubMed ID: 27241875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spiers Memorial Lecture. Surface-enhanced Raman spectroscopy: from single particle/molecule spectroscopy to ångstrom-scale spatial resolution and femtosecond time resolution.
    Henry AI; Ueltschi TW; McAnally MO; Van Duyne RP
    Faraday Discuss; 2017 Dec; 205():9-30. PubMed ID: 28906524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct imaging of surface-enhanced Raman scattering in the near field.
    Zhang P; Smith S; Rumbles G; Himmel ME
    Langmuir; 2005 Jan; 21(2):520-3. PubMed ID: 15641817
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface-enhanced Raman spectroscopy: concepts and chemical applications.
    Schlücker S
    Angew Chem Int Ed Engl; 2014 May; 53(19):4756-95. PubMed ID: 24711218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface-enhanced Raman scattering-active nanostructures and strategies for bioassays.
    Jun BH; Kim G; Noh MS; Kang H; Kim YK; Cho MH; Jeong DH; Lee YS
    Nanomedicine (Lond); 2011 Oct; 6(8):1463-80. PubMed ID: 22026382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications.
    Chang L; Ding Y; Li X
    Biosens Bioelectron; 2013 Dec; 50():106-10. PubMed ID: 23838276
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bi-analyte single molecule SERS technique with simultaneous spatial resolution.
    Etchegoin PG; Le Ru EC; Fainstein A
    Phys Chem Chem Phys; 2011 Mar; 13(10):4500-6. PubMed ID: 21264391
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molybdenum Nanoscrews: A Novel Non-coinage-Metal Substrate for Surface-Enhanced Raman Scattering.
    An D; Shen Y; Wen J; Zheng Z; Chen J; She J; Chen H; Deng S; Xu N
    Nanomicro Lett; 2017; 9(1):2. PubMed ID: 30460299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing.
    Abu Hatab NA; Oran JM; Sepaniak MJ
    ACS Nano; 2008 Feb; 2(2):377-85. PubMed ID: 19206640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy.
    Lin HX; Li JM; Liu BJ; Liu DY; Liu J; Terfort A; Xie ZX; Tian ZQ; Ren B
    Phys Chem Chem Phys; 2013 Mar; 15(12):4130-5. PubMed ID: 23400238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.