These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 23781784)

  • 1. Correlated one-body potential from second-order Møller-Plesset perturbation theory: alternative to orbital-optimized MP2 method.
    Lan TN; Yanai T
    J Chem Phys; 2013 Jun; 138(22):224108. PubMed ID: 23781784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended Koopmans' theorem at the second-order perturbation theory.
    Gu Y; Xu X
    J Comput Chem; 2020 May; 41(12):1165-1174. PubMed ID: 32003902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Turney JM; Yamaguchi Y; Schaefer HF; Sherrill CD
    J Chem Phys; 2011 Sep; 135(10):104103. PubMed ID: 21932872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic energy gradients for the orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2013 May; 138(18):184103. PubMed ID: 23676025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory.
    Kurashige Y; Yang J; Chan GK; Manby FR
    J Chem Phys; 2012 Mar; 136(12):124106. PubMed ID: 22462834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis.
    Distasio RA; Steele RP; Rhee YM; Shao Y; Head-Gordon M
    J Comput Chem; 2007 Apr; 28(5):839-56. PubMed ID: 17219361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme.
    Kristensen K; Jørgensen P; Jansík B; Kjærgaard T; Reine S
    J Chem Phys; 2012 Sep; 137(11):114102. PubMed ID: 22998244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The extended Koopmans' theorem for orbital-optimized methods: accurate computation of ionization potentials.
    Bozkaya U
    J Chem Phys; 2013 Oct; 139(15):154105. PubMed ID: 24160498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated one-particle method: numerical results.
    Beste A; Bartlett RJ
    J Chem Phys; 2005 Oct; 123(15):154103. PubMed ID: 16252938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Ishimura K; Kitaura K
    J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2013 Sep; 139(10):104116. PubMed ID: 24050337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method.
    Kobayashi M; Imamura Y; Nakai H
    J Chem Phys; 2007 Aug; 127(7):074103. PubMed ID: 17718602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation and assessment of relativistic hyperfine-coupling tensors on the basis of orbital-optimized second-order Møller-Plesset perturbation theory and the second-order Douglas-Kroll-Hess transformation.
    Sandhoefer B; Kossmann S; Neese F
    J Chem Phys; 2013 Mar; 138(10):104102. PubMed ID: 23514460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Block correlated second order perturbation theory with a generalized valence bond reference function.
    Xu E; Li S
    J Chem Phys; 2013 Nov; 139(17):174111. PubMed ID: 24206291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2014 Sep; 141(12):124108. PubMed ID: 25273413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.
    Bozkaya U
    J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Koopmans' theorem in the ROHF method: canonical form for the Hartree-Fock Hamiltonian.
    Plakhutin BN; Gorelik EV; Breslavskaya NN
    J Chem Phys; 2006 Nov; 125(20):204110. PubMed ID: 17144693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters.
    Herbert JM; Head-Gordon M
    Phys Chem Chem Phys; 2006 Jan; 8(1):68-78. PubMed ID: 16482246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.