These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23781798)

  • 1. Electronic structure of CeO studied by a four-component relativistic configuration interaction method.
    Moriyama H; Tatewaki H; Yamamoto S
    J Chem Phys; 2013 Jun; 138(22):224310. PubMed ID: 23781798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structures and bonding of CeF: a frozen-core four-component relativistic configuration interaction study.
    Wasada-Tsutsui Y; Watanabe Y; Tatewaki H
    J Phys Chem A; 2007 Sep; 111(36):8877-83. PubMed ID: 17705453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods.
    Yamamoto S; Tatewaki H
    J Chem Phys; 2015 Mar; 142(9):094312. PubMed ID: 25747086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipole allowed transitions in GdF: A four-component relativistic general open-shell configuration interaction study.
    Yamamoto S; Tatewaki H; Saue T
    J Chem Phys; 2008 Dec; 129(24):244505. PubMed ID: 19123515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure of CeF from frozen-core four-component relativistic multiconfigurational quasidegenerate perturbation theory.
    Tatewaki H; Yamamoto S; Watanabe Y; Nakano H
    J Chem Phys; 2008 Jun; 128(21):214901. PubMed ID: 18537445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure of LaF+ and LaF from frozen-core four-component relativistic multiconfigurational quasidegenerate perturbation theory.
    Moriyama H; Watanabe Y; Nakano H; Tatewaki H
    J Phys Chem A; 2008 Mar; 112(12):2683-92. PubMed ID: 18311949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excited states of PbF: a four-component relativistic study.
    Yamamoto S; Tatewaki H
    J Chem Phys; 2010 Feb; 132(5):054303. PubMed ID: 20136312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure of LaO based on frozen-core four-component relativistic multiconfigurational quasidegenerate perturbation theory.
    Moriyama H; Watanabe Y; Nakano H; Yamamoto S; Tatewaki H
    J Chem Phys; 2010 Mar; 132(12):124310. PubMed ID: 20370126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.
    Ji WX; Xu W; Schwarz WH; Wang SG
    J Comput Chem; 2015 Mar; 36(7):449-58. PubMed ID: 25565146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radial correlation effects on interconfigurational excitations at the end of the lanthanide series: a restricted active space second order perturbation study of Yb2+ and SrCl2:Yb2+.
    Barandiarán Z; Seijo L
    J Chem Phys; 2013 Feb; 138(7):074102. PubMed ID: 23444992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threshold Ionization Spectroscopy and Theoretical Calculations of LnO (Ln = La and Ce).
    Cao W; Zhang Y; Wu L; Yang DS
    J Phys Chem A; 2021 Mar; 125(9):1941-1948. PubMed ID: 33651628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectron spectra of CeO(-) and Ce(OH)2 (-).
    Ray M; Felton JA; Kafader JO; Topolski JE; Jarrold CC
    J Chem Phys; 2015 Feb; 142(6):064305. PubMed ID: 25681904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and electronic structures of cerium and cerium suboxide clusters.
    Kafader JO; Topolski JE; Jarrold CC
    J Chem Phys; 2016 Oct; 145(15):154306. PubMed ID: 27782463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active sites of stoichiometric cerium oxide cations (CemO2m+) probed by reactions with carbon monoxide and small hydrocarbon molecules.
    Wu XN; Zhao YX; Xue W; Wang ZC; He SG; Ding XL
    Phys Chem Chem Phys; 2010 Apr; 12(16):3984-97. PubMed ID: 20379490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5d and 4f electron configuration of CeB6 at 340 and 535 K.
    Makita R; Tanaka K; Onuki Y
    Acta Crystallogr B; 2008 Oct; 64(Pt 5):534-49. PubMed ID: 18799841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopy and calculations for 4f(N) → 4f(N-1)5d transitions of lanthanide ions in K3YF6.
    Ma CG; Brik MG; Ryba-Romanowski W; Swart HC; Gusowski MA
    J Phys Chem A; 2012 Sep; 116(36):9158-80. PubMed ID: 22881828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relativistic energy-consistent pseudopotentials for superheavy elements 119 and 120 including quantum electrodynamic effects.
    Hangele T; Dolg M; Schwerdtfeger P
    J Chem Phys; 2013 May; 138(17):174113. PubMed ID: 23656120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electron shuffle: Cerium influences samarium 4f orbital occupancy in heteronuclear Ce-Sm oxide clusters.
    Kafader JO; Topolski JE; Marrero-Colon V; Iyengar SS; Jarrold CC
    J Chem Phys; 2017 May; 146(19):194310. PubMed ID: 28527471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New model core potentials for gold.
    Zeng T; Klobukowski M
    J Chem Phys; 2009 May; 130(20):204107. PubMed ID: 19485437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relativistic correlating basis sets for lanthanide atoms from Ce to Lu.
    Sekiya M; Noro T; Miyoshi E; Osanai Y; Koga T
    J Comput Chem; 2006 Mar; 27(4):463-70. PubMed ID: 16419148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.