These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23781812)

  • 1. Phonon mode of TiO2 coupled with the electron transfer from N3 dye.
    Nomoto T; Fujio K; Sasahara A; Okajima H; Koide N; Katayama H; Onishi H
    J Chem Phys; 2013 Jun; 138(22):224704. PubMed ID: 23781812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent effects on interfacial electron transfer from Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 to nanoparticulate TiO2: spectroscopy and solar photoconversion.
    Pollard JA; Zhang D; Downing JA; Knorr FJ; McHale JL
    J Phys Chem A; 2005 Dec; 109(50):11443-52. PubMed ID: 16354034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excited-state metal-to-ligand charge transfer dynamics of a ruthenium(II) dye in solution and adsorbed on TiO2 nanoparticles from resonance Raman spectroscopy.
    Shoute LC; Loppnow GR
    J Am Chem Soc; 2003 Dec; 125(50):15636-46. PubMed ID: 14664612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STM observation of a ruthenium dye adsorbed on a TiO2(110) surface.
    Sasahara A; Pang CL; Onishi H
    J Phys Chem B; 2006 Mar; 110(10):4751-5. PubMed ID: 16526711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFT and TD-DFT Investigation of a Charge Transfer Surface Resonance Raman Model of N3 Dye Bound to a Small TiO
    Birke RL; Lombardi JR
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34199980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and molecular surface structure of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2: a photoelectron spectroscopy study.
    Johansson EM; Hedlund M; Siegbahn H; Rensmo H
    J Phys Chem B; 2005 Dec; 109(47):22256-63. PubMed ID: 16853898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of TiO2 particles on normal and resonance Raman spectra of coumarin 343: a theoretical investigation.
    Yang L; Wu W; Zhao Y
    Phys Chem Chem Phys; 2015 Apr; 17(16):10910-8. PubMed ID: 25821005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal.
    Persson P; Lundqvist MJ
    J Phys Chem B; 2005 Jun; 109(24):11918-24. PubMed ID: 16852468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and electron injection of the N3 metal-organic dye on the TiO2 rutile (110) surface.
    Martsinovich N; Ambrosio F; Troisi A
    Phys Chem Chem Phys; 2012 Dec; 14(48):16668-76. PubMed ID: 23092996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Transfer from Bi-Isonicotinic Acid Emerges upon Photodegradation of N3-Sensitized TiO
    Karakus M; Zhang W; Räder HJ; Bonn M; Cánovas E
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35376-35382. PubMed ID: 28914045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anharmonic vibrations of the carboxyl group in acetic acid on TiO2: implications for adsorption mode assignment in dye-sensitized solar cells.
    Chan M; Carrington T; Manzhos S
    Phys Chem Chem Phys; 2013 Jul; 15(25):10028-34. PubMed ID: 23486821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the influence of coadsorbent dye upon the interfacial structure of dye-sensitized solar cells.
    Honda M; Yanagida M; Han L; Miyano K
    J Chem Phys; 2014 Nov; 141(17):174709. PubMed ID: 25381539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjacent- versus remote-site electron injection in TiO2 surfaces modified with binuclear ruthenium complexes.
    Gholamkhass B; Koike K; Negishi N; Hori H; Sano T; Takeuchi K
    Inorg Chem; 2003 May; 42(9):2919-32. PubMed ID: 12716184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion.
    Zhang D; Downing JA; Knorr FJ; McHale JL
    J Phys Chem B; 2006 Nov; 110(43):21890-8. PubMed ID: 17064155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of Ru(II) dyes for interfacial and light-harvesting optimization.
    Lobello MG; Wu KL; Reddy MA; Marotta G; Grätzel M; Nazeeruddin MK; Chi Y; Chandrasekharam M; Vitillaro G; De Angelis F
    Dalton Trans; 2014 Feb; 43(7):2726-32. PubMed ID: 24366343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced degree of charge transfer in dye-sensitized solar cells with a ZnO-TiO
    Wang X; Li P; Han XX; Kitahama Y; Zhao B; Ozaki Y
    Nanoscale; 2017 Oct; 9(40):15303-15313. PubMed ID: 28805870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photovoltaic properties of dye-sensitized solar cells associated with amphiphilic structure of ruthenium complex dyes.
    Liu KY; Hsu CL; Ni JS; Ho KC; Lin KF
    J Colloid Interface Sci; 2012 Apr; 372(1):73-9. PubMed ID: 22331035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.
    Li Y; Pan K; Wang G; Jiang B; Tian C; Zhou W; Qu Y; Liu S; Feng L; Fu H
    Dalton Trans; 2013 Jun; 42(22):7971-9. PubMed ID: 23455429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2.
    Wenger B; Grätzel M; Moser JE
    J Am Chem Soc; 2005 Sep; 127(35):12150-1. PubMed ID: 16131154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N3/TiO
    Farah YR; Krummel AT
    J Chem Phys; 2022 Jul; 157(4):044702. PubMed ID: 35922359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.