These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 23781844)
1. Singlet oxygen generation by the genetically encoded tag miniSOG. Ruiz-González R; Cortajarena AL; Mejias SH; Agut M; Nonell S; Flors C J Am Chem Soc; 2013 Jul; 135(26):9564-7. PubMed ID: 23781844 [TBL] [Abstract][Full Text] [Related]
2. Singlet oxygen photosensitisation by the fluorescent protein Pp2FbFP L30M, a novel derivative of Pseudomonas putida flavin-binding Pp2FbFP. Torra J; Burgos-Caminal A; Endres S; Wingen M; Drepper T; Gensch T; Ruiz-González R; Nonell S Photochem Photobiol Sci; 2015 Feb; 14(2):280-7. PubMed ID: 25375892 [TBL] [Abstract][Full Text] [Related]
3. Riboflavin-binding proteins for singlet oxygen production. Lafaye C; Aumonier S; Torra J; Signor L; von Stetten D; Noirclerc-Savoye M; Shu X; Ruiz-González R; Gotthard G; Royant A; Nonell S Photochem Photobiol Sci; 2022 Sep; 21(9):1545-1555. PubMed ID: 35041199 [TBL] [Abstract][Full Text] [Related]
4. Applications of genetically encoded photosensitizer miniSOG: from correlative light electron microscopy to immunophotosensitizing. Souslova EA; Mironova KE; Deyev SM J Biophotonics; 2017 Mar; 10(3):338-352. PubMed ID: 27435584 [TBL] [Abstract][Full Text] [Related]
5. Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Qi YB; Garren EJ; Shu X; Tsien RY; Jin Y Proc Natl Acad Sci U S A; 2012 May; 109(19):7499-504. PubMed ID: 22532663 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG. Xu S; Chisholm AD Sci Rep; 2016 Feb; 6():21271. PubMed ID: 26861262 [TBL] [Abstract][Full Text] [Related]
7. Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins. Westberg M; Bregnhøj M; Etzerodt M; Ogilby PR J Phys Chem B; 2017 Mar; 121(12):2561-2574. PubMed ID: 28257211 [TBL] [Abstract][Full Text] [Related]
8. [Preparation of Recombinant Human Adenoviruses Labeled with miniSOG]. Zou X; Xiao R; Guo X; Qu J; Lu Z; Hong T Bing Du Xue Bao; 2016 Jan; 32(1):32-8. PubMed ID: 27295881 [TBL] [Abstract][Full Text] [Related]
9. Tailing miniSOG: structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein. Torra J; Lafaye C; Signor L; Aumonier S; Flors C; Shu X; Nonell S; Gotthard G; Royant A Sci Rep; 2019 Feb; 9(1):2428. PubMed ID: 30787421 [TBL] [Abstract][Full Text] [Related]
10. No Photon Wasted: An Efficient and Selective Singlet Oxygen Photosensitizing Protein. Westberg M; Bregnhøj M; Etzerodt M; Ogilby PR J Phys Chem B; 2017 Oct; 121(40):9366-9371. PubMed ID: 28892628 [TBL] [Abstract][Full Text] [Related]
11. Oxygen-dependent photochemistry and photophysics of "miniSOG," a protein-encased flavin. Pimenta FM; Jensen RL; Breitenbach T; Etzerodt M; Ogilby PR Photochem Photobiol; 2013; 89(5):1116-26. PubMed ID: 23869989 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulation of dioxygen pathways through mini singlet oxygen generator (miniSOG), a genetically encoded marker and killer protein. Pietra F Chem Biodivers; 2014 Dec; 11(12):1883-91. PubMed ID: 25491332 [TBL] [Abstract][Full Text] [Related]
13. Quantification of photosensitized singlet oxygen production by a fluorescent protein. Ragàs X; Cooper LP; White JH; Nonell S; Flors C Chemphyschem; 2011 Jan; 12(1):161-5. PubMed ID: 21226197 [TBL] [Abstract][Full Text] [Related]
14. The use of miniSOG in the localization of mitochondrial proteins. Perkins GA Methods Enzymol; 2014; 547():165-79. PubMed ID: 25416358 [TBL] [Abstract][Full Text] [Related]
15. Quantification of light-induced miniSOG superoxide production using the selective marker, 2-hydroxyethidium. Barnett ME; Baran TM; Foster TH; Wojtovich AP Free Radic Biol Med; 2018 Feb; 116():134-140. PubMed ID: 29353158 [TBL] [Abstract][Full Text] [Related]
16. Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy. Rodríguez-Pulido A; Cortajarena AL; Torra J; Ruiz-González R; Nonell S; Flors C Chem Commun (Camb); 2016 Jun; 52(54):8405-8. PubMed ID: 27301706 [TBL] [Abstract][Full Text] [Related]
18. Electron Transfer Drives the Photosensitized Polymerization of Contrast Agents by Flavoprotein Tags for Correlative Microscopy. Lone MS; Merino-Chavez OD; Ricks NJ; Hammond MC; Noriega R J Am Chem Soc; 2024 Aug; 146(34):23797-23805. PubMed ID: 39150381 [TBL] [Abstract][Full Text] [Related]
19. An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Endres S; Wingen M; Torra J; Ruiz-González R; Polen T; Bosio G; Bitzenhofer NL; Hilgers F; Gensch T; Nonell S; Jaeger KE; Drepper T Sci Rep; 2018 Oct; 8(1):15021. PubMed ID: 30301917 [TBL] [Abstract][Full Text] [Related]
20. New insight into singlet oxygen generation at surface modified nanocrystalline TiO2--the effect of near-infrared irradiation. Buchalska M; Labuz P; Bujak Ł; Szewczyk G; Sarna T; Maćkowski S; Macyk W Dalton Trans; 2013 Jul; 42(26):9468-75. PubMed ID: 23665700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]