BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 23781865)

  • 1. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability.
    Barodka V; Mohanty JG; Mustafa AK; Santhanam L; Nyhan A; Bhunia AK; Sikka G; Nyhan D; Berkowitz DE; Rifkind JM
    Transfusion; 2014 Feb; 54(2):434-44. PubMed ID: 23781865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nitric oxide and its congeners on sickle red blood cell deformability.
    Belanger AM; Keggi C; Kanias T; Gladwin MT; Kim-Shapiro DB
    Transfusion; 2015 Oct; 55(10):2464-72. PubMed ID: 25912054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of density-fractionated RBC deformability by nitric oxide.
    Bor-Kucukatay M; Meiselman HJ; Başkurt OK
    Clin Hemorheol Microcirc; 2005; 33(4):363-7. PubMed ID: 16317245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nitric oxide on red blood cell deformability.
    Bor-Kucukatay M; Wenby RB; Meiselman HJ; Baskurt OK
    Am J Physiol Heart Circ Physiol; 2003 May; 284(5):H1577-84. PubMed ID: 12521942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection of erythrocytes from sub-hemolytic mechanical damage by nitric oxide mediated inhibition of potassium leakage.
    Baskurt OK; Uyuklu M; Meiselman HJ
    Biorheology; 2004; 41(2):79-89. PubMed ID: 15090678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide inhibits hypoxia-induced impairment of human RBC deformability through reducing the cross-linking of membrane protein band 3.
    Zhao Y; Wang X; Wang R; Chen D; Noviana M; Zhu H
    J Cell Biochem; 2019 Jan; 120(1):305-320. PubMed ID: 30218451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of thrombocytapheresis on blood rheology in healthy donors: role of nitric oxide.
    Bor-Kucukatay M; Keskin A; Akdam H; Kabukcu-hacioglu S; Erken G; Atsak P; Kucukatay V
    Transfus Apher Sci; 2008 Oct; 39(2):101-8. PubMed ID: 18707921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cell rheological alterations in hypertension induced by chronic inhibition of nitric oxide synthesis in rats.
    Bor-Küçükatay M; Yalçin O; Gökalp O; Kipmen-Korgun D; Yesilkaya A; Baykal A; Ispir M; Senturk UK; Kaputlu I; Başkurt OK
    Clin Hemorheol Microcirc; 2000; 22(4):267-75. PubMed ID: 11081464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba L. guard cells.
    Zhao X; Li YY; Xiao HL; Xu CS; Zhang X
    J Integr Plant Biol; 2013 Jun; 55(6):527-36. PubMed ID: 23384172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of calcium and A23187 on deformability and volume of human red blood cells.
    Dodson RA; Hinds TR; Vincenzi FF
    Blood Cells; 1987; 12(3):555-64. PubMed ID: 3115342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nitric oxide on responses of the human uterine arteries to vasopressin.
    Kostrzewska A; Modzelewska B; Kleszczewski T; Batra S
    Vascul Pharmacol; 2008 Jan; 48(1):9-13. PubMed ID: 17996497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clotrimazole-sensitive K+ currents regulate pacemaker activity in interstitial cells of Cajal.
    Zhu Y; Ye J; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2007 Jun; 292(6):G1715-25. PubMed ID: 17347448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid A decreases human erythrocytes deformability by increasing intracellular Ca(2+): effects of verapamil, staurosporine and the rho-kinase inhibitor Y-27632.
    Ruef P; Ehrhard M; Frommhold D; Koch L; Fritzsching B; Poeschl J
    Clin Hemorheol Microcirc; 2011; 49(1-4):315-22. PubMed ID: 22214703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The in vivo antioxidant effectiveness of alpha-tocopherol in oxidative stress induced by sodium nitroprusside in rat red blood cells.
    Yerer MB; Aydogan S
    Clin Hemorheol Microcirc; 2004; 30(3-4):323-9. PubMed ID: 15258362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of calcium mobilization in sodium nitroprusside-induced increase of calcium-activated potassium currents in gastric antral circular myocytes of guinea pig.
    Yu YC; Guo HS; Li Y; Piao L; Li L; Li ZL; Xu WX
    Acta Pharmacol Sin; 2003 Aug; 24(8):819-25. PubMed ID: 12904283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hemoglobin oxygenation in the modulation of red blood cell mechanical properties by nitric oxide.
    Uyuklu M; Meiselman HJ; Baskurt OK
    Nitric Oxide; 2009 Aug; 21(1):20-6. PubMed ID: 19362160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role molecular signaling pathways in changes of red blood cell deformability.
    Muravyov AV; Tikhomirova IA
    Clin Hemorheol Microcirc; 2013; 53(1-2):45-59. PubMed ID: 22951624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cells of a transgenic mouse expressing high levels of human hemoglobin S exhibit deoxy-stimulated cation flux.
    Romero JR; Fabry ME; Suzuka S; Nagel RL; Canessa M
    J Membr Biol; 1997 Oct; 159(3):187-96. PubMed ID: 9312208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Insights in the Regulation of Phosphatidylserine Exposure in Human Red Blood Cells.
    Wesseling MC; Wagner-Britz L; Nguyen DB; Asanidze S; Mutua J; Mohamed N; Hanf B; Ghashghaeinia M; Kaestner L; Bernhardt I
    Cell Physiol Biochem; 2016; 39(5):1941-1954. PubMed ID: 27771709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of the Gardos channel (KCa3.1) in mice causes subtle erythrocyte macrocytosis and progressive splenomegaly.
    Grgic I; Kaistha BP; Paschen S; Kaistha A; Busch C; Si H; Köhler K; Elsässer HP; Hoyer J; Köhler R
    Pflugers Arch; 2009 Jun; 458(2):291-302. PubMed ID: 19037656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.