These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 23782230)

  • 1. The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics.
    Wang YG; Yoon Y; Glezakou VA; Li J; Rousseau R
    J Am Chem Soc; 2013 Jul; 135(29):10673-83. PubMed ID: 23782230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.
    Widmann D; Behm RJ
    Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au.
    Liu ZP; Gong XQ; Kohanoff J; Sanchez C; Hu P
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):266102. PubMed ID: 14754070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110).
    Molina LM; Rasmussen MD; Hammer B
    J Chem Phys; 2004 Apr; 120(16):7673-80. PubMed ID: 15267678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacancy-Mediated Processes in the Oxidation of CO on PdO(101).
    Weaver JF; Zhang F; Pan L; Li T; Asthagiri A
    Acc Chem Res; 2015 May; 48(5):1515-23. PubMed ID: 25933250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating the charge state of Au clusters on rutile TiO2(110) single crystal surfaces through molecular reactions probed by infrared spectroscopy.
    Cao Y; Hu S; Yu M; Wang T; Huang S; Yan S; Xu M
    Phys Chem Chem Phys; 2016 Jul; 18(26):17660-5. PubMed ID: 27306113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation catalysis by oxide-supported Au nanostructures: the role of supports and the effect of external conditions.
    Laursen S; Linic S
    Phys Rev Lett; 2006 Jul; 97(2):026101. PubMed ID: 16907463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Rearrangement of Au-Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study.
    Xu CQ; Lee MS; Wang YG; Cantu DC; Li J; Glezakou VA; Rousseau R
    ACS Nano; 2017 Feb; 11(2):1649-1658. PubMed ID: 28121422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO oxidation mechanism on CeO(2)-supported Au nanoparticles.
    Kim HY; Lee HM; Henkelman G
    J Am Chem Soc; 2012 Jan; 134(3):1560-70. PubMed ID: 22191484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO oxidation on TiO(2) (110) supported subnanometer gold clusters: size and shape effects.
    Li L; Gao Y; Li H; Zhao Y; Pei Y; Chen Z; Zeng XC
    J Am Chem Soc; 2013 Dec; 135(51):19336-46. PubMed ID: 24283343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field changes on Au nanoparticles on semiconductor supports--the molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO2 nanocatalysts.
    McEntee M; Stevanovic A; Tang W; Neurock M; Yates JT
    J Am Chem Soc; 2015 Feb; 137(5):1972-82. PubMed ID: 25610956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition metal atoms pathways on rutile TiO2 (110) surface: distribution of Ti3+ states and evidence of enhanced peripheral charge accumulation.
    Cai Y; Bai Z; Chintalapati S; Zeng Q; Feng YP
    J Chem Phys; 2013 Apr; 138(15):154711. PubMed ID: 23614440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced adsorption energy of Au1 and O2 on the stoichiometric TiO2(110) surface by coadsorption with other molecules.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Jan; 128(4):044714. PubMed ID: 18247988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism for NO2 charging on metal supported MgO.
    Grönbeck H
    J Phys Chem B; 2006 Jun; 110(24):11977-81. PubMed ID: 16800504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A first-principles investigation of the effect of Pt cluster size on CO and NO oxidation intermediates and energetics.
    Xu Y; Getman RB; Shelton WA; Schneider WF
    Phys Chem Chem Phys; 2008 Oct; 10(39):6009-18. PubMed ID: 18825289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways.
    Wang YG; Cantu DC; Lee MS; Li J; Glezakou VA; Rousseau R
    J Am Chem Soc; 2016 Aug; 138(33):10467-76. PubMed ID: 27480512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic oxidation of methanol to formic acid on Au20-: a theoretical study on the reaction mechanism.
    Bobuatong K; Karanjit S; Fukuda R; Ehara M; Sakurai H
    Phys Chem Chem Phys; 2012 Mar; 14(9):3103-11. PubMed ID: 22286101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.