BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23782274)

  • 1. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2.
    Gregorczyk KE; Liu Y; Sullivan JP; Rubloff GW
    ACS Nano; 2013 Jul; 7(7):6354-60. PubMed ID: 23782274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Additional Capacity and Reaction Mechanism of the RuO2 Anode in Lithium Rechargeable Batteries.
    Kim Y; Muhammad S; Kim H; Cho YH; Kim H; Kim JM; Yoon WS
    ChemSusChem; 2015 Jul; 8(14):2378-84. PubMed ID: 26130378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials.
    Nie A; Gan LY; Cheng Y; Asayesh-Ardakani H; Li Q; Dong C; Tao R; Mashayek F; Wang HT; Schwingenschlögl U; Klie RF; Yassar RS
    ACS Nano; 2013 Jul; 7(7):6203-11. PubMed ID: 23730945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic resolution observation of conversion-type anode RuO₂ during the first electrochemical lithiation.
    Mao M; Nie A; Liu J; Wang H; Mao SX; Wang Q; Li K; Zhang XX
    Nanotechnology; 2015 Mar; 26(12):125404. PubMed ID: 25742426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium-assisted electrochemical welding in silicon nanowire battery electrodes.
    Karki K; Epstein E; Cho JH; Jia Z; Li T; Picraux ST; Wang C; Cumings J
    Nano Lett; 2012 Mar; 12(3):1392-7. PubMed ID: 22339576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy.
    Su Q; Wang S; Yao L; Li H; Du G; Ye H; Fang Y
    Sci Rep; 2016 Jun; 6():28197. PubMed ID: 27306189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes.
    Su Q; Xie D; Zhang J; Du G; Xu B
    ACS Nano; 2013 Oct; 7(10):9115-21. PubMed ID: 24015669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes.
    Lin CF; Noked M; Kozen AC; Liu C; Zhao O; Gregorczyk K; Hu L; Lee SB; Rubloff GW
    ACS Nano; 2016 Feb; 10(2):2693-701. PubMed ID: 26820038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO3 Nanobelt by in Situ Transmission Electron Microscopy.
    Xia W; Zhang Q; Xu F; Sun L
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9170-7. PubMed ID: 27008317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.
    Wang CM; Li X; Wang Z; Xu W; Liu J; Gao F; Kovarik L; Zhang JG; Howe J; Burton DJ; Liu Z; Xiao X; Thevuthasan S; Baer DR
    Nano Lett; 2012 Mar; 12(3):1624-32. PubMed ID: 22385150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries.
    Jung HG; Jeong YS; Park JB; Sun YK; Scrosati B; Lee YJ
    ACS Nano; 2013 Apr; 7(4):3532-9. PubMed ID: 23540570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.
    Qiu MC; Yang LW; Qi X; Li J; Zhong JX
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.
    Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY
    ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.
    Yuan FW; Yang HJ; Tuan HY
    ACS Nano; 2012 Nov; 6(11):9932-42. PubMed ID: 23043347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Transmission Electron Microscopy Observation of the Lithiation-Delithiation Conversion Behavior of CuO/Graphene Anode.
    Su Q; Yao L; Zhang J; Du G; Xu B
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23062-8. PubMed ID: 26437926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.
    Misra S; Liu N; Nelson J; Hong SS; Cui Y; Toney MF
    ACS Nano; 2012 Jun; 6(6):5465-73. PubMed ID: 22558938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process.
    Gregorczyk KE; Kozen AC; Chen X; Schroeder MA; Noked M; Cao A; Hu L; Rubloff GW
    ACS Nano; 2015 Jan; 9(1):464-73. PubMed ID: 25517036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.