These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
553 related articles for article (PubMed ID: 23782488)
1. A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects. Huri PY; Huri G; Yasar U; Ucar Y; Dikmen N; Hasirci N; Hasirci V Biomed Mater; 2013 Aug; 8(4):045009. PubMed ID: 23782488 [TBL] [Abstract][Full Text] [Related]
2. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects. Yilgor P; Yilmaz G; Onal MB; Solmaz I; Gundogdu S; Keskil S; Sousa RA; Reis RL; Hasirci N; Hasirci V J Tissue Eng Regen Med; 2013 Sep; 7(9):687-96. PubMed ID: 22396311 [TBL] [Abstract][Full Text] [Related]
3. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105 [TBL] [Abstract][Full Text] [Related]
4. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. Park KH; Kim H; Moon S; Na K J Biosci Bioeng; 2009 Dec; 108(6):530-7. PubMed ID: 19914589 [TBL] [Abstract][Full Text] [Related]
5. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration. Xiao C; Zhou H; Liu G; Zhang P; Fu Y; Gu P; Hou H; Tang T; Fan X Biomed Mater; 2011 Feb; 6(1):015013. PubMed ID: 21252414 [TBL] [Abstract][Full Text] [Related]
6. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Yilgor P; Tuzlakoglu K; Reis RL; Hasirci N; Hasirci V Biomaterials; 2009 Jul; 30(21):3551-9. PubMed ID: 19361857 [TBL] [Abstract][Full Text] [Related]
7. Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. Wang H; Zou Q; Boerman OC; Nijhuis AW; Jansen JA; Li Y; Leeuwenburgh SC J Control Release; 2013 Mar; 166(2):172-81. PubMed ID: 23266450 [TBL] [Abstract][Full Text] [Related]
8. Sequential BMP-2/BMP-7 delivery from polyester nanocapsules. Yilgor P; Hasirci N; Hasirci V J Biomed Mater Res A; 2010 May; 93(2):528-36. PubMed ID: 19585564 [TBL] [Abstract][Full Text] [Related]
9. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects. Yamamoto M; Hokugo A; Takahashi Y; Nakano T; Hiraoka M; Tabata Y Biomaterials; 2015 Jul; 56():18-25. PubMed ID: 25934275 [TBL] [Abstract][Full Text] [Related]
10. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Li L; Zhou G; Wang Y; Yang G; Ding S; Zhou S Biomaterials; 2015 Jan; 37():218-29. PubMed ID: 25453952 [TBL] [Abstract][Full Text] [Related]
11. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Cao L; Wang J; Hou J; Xing W; Liu C Biomaterials; 2014 Jan; 35(2):684-98. PubMed ID: 24140042 [TBL] [Abstract][Full Text] [Related]
12. Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration. Yilgor P; Sousa RA; Reis RL; Hasirci N; Hasirci V J Mater Sci Mater Med; 2010 Nov; 21(11):2999-3008. PubMed ID: 20740306 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Berner A; Boerckel JD; Saifzadeh S; Steck R; Ren J; Vaquette C; Zhang JQ; Nerlich M; Guldberg RE; Hutmacher DW; Woodruff MA Cell Tissue Res; 2012 Mar; 347(3):603-12. PubMed ID: 22277992 [TBL] [Abstract][Full Text] [Related]
14. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. Suliman S; Xing Z; Wu X; Xue Y; Pedersen TO; Sun Y; Døskeland AP; Nickel J; Waag T; Lygre H; Finne-Wistrand A; Steinmüller-Nethl D; Krueger A; Mustafa K J Control Release; 2015 Jan; 197():148-57. PubMed ID: 25445698 [TBL] [Abstract][Full Text] [Related]
15. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. Oest ME; Dupont KM; Kong HJ; Mooney DJ; Guldberg RE J Orthop Res; 2007 Jul; 25(7):941-50. PubMed ID: 17415756 [TBL] [Abstract][Full Text] [Related]
16. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. La WG; Park S; Yoon HH; Jeong GJ; Lee TJ; Bhang SH; Han JY; Char K; Kim BS Small; 2013 Dec; 9(23):4051-60. PubMed ID: 23839958 [TBL] [Abstract][Full Text] [Related]
17. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692 [TBL] [Abstract][Full Text] [Related]
18. Temporally controlled multiple-gene delivery in scaffolds: A promising strategy to enhance bone regeneration. Liu J; Xu L; Li Y; Ma J Med Hypotheses; 2011 Feb; 76(2):173-5. PubMed ID: 20926199 [TBL] [Abstract][Full Text] [Related]
19. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Basmanav FB; Kose GT; Hasirci V Biomaterials; 2008 Nov; 29(31):4195-204. PubMed ID: 18691753 [TBL] [Abstract][Full Text] [Related]
20. Osteogenic/angiogenic dual growth factor delivery microcapsules for regeneration of vascularized bone tissue. Subbiah R; Hwang MP; Van SY; Do SH; Park H; Lee K; Kim SH; Yun K; Park K Adv Healthc Mater; 2015 Sep; 4(13):1982-92. PubMed ID: 26138344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]