These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23783073)

  • 1. Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension.
    Chan SL; Sweet JG; Cipolla MJ
    FASEB J; 2013 Oct; 27(10):3917-27. PubMed ID: 23783073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor-γ.
    Chan SL; Cipolla MJ
    FASEB J; 2011 Sep; 25(9):3229-39. PubMed ID: 21602449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor.
    Pires PW; Jackson WF; Dorrance AM
    Am J Physiol Heart Circ Physiol; 2015 Jul; 309(1):H127-36. PubMed ID: 25910805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxin increased blood pressure and sympathetic activity in paraventricular nucleus of hypertensive rats via enhancing oxidative stress.
    Bian R; Gong J; Li J; Li P
    Peptides; 2021 Jul; 141():170550. PubMed ID: 33839220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS.
    Chow BS; Chew EG; Zhao C; Bathgate RA; Hewitson TD; Samuel CS
    PLoS One; 2012; 7(8):e42714. PubMed ID: 22936987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hypertension and carotid occlusion on brain parenchymal arteriole structure and reactivity.
    Sweet JG; Chan SL; Cipolla MJ
    J Appl Physiol (1985); 2015 Oct; 119(7):817-23. PubMed ID: 26294749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Captopril improves cerebrovascular structure and function in old hypertensive rats.
    Dupuis F; Atkinson J; Limiñana P; Chillon JM
    Br J Pharmacol; 2005 Feb; 144(3):349-56. PubMed ID: 15655534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxin reverses cardiac and renal fibrosis in spontaneously hypertensive rats.
    Lekgabe ED; Kiriazis H; Zhao C; Xu Q; Moore XL; Su Y; Bathgate RA; Du XJ; Samuel CS
    Hypertension; 2005 Aug; 46(2):412-8. PubMed ID: 15967869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expression of matrix metalloproteinase-13 is increased in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model.
    Ueno M; Wu B; Nishiyama A; Huang CL; Hosomi N; Kusaka T; Nakagawa T; Onodera M; Kido M; Sakamoto H
    Hypertens Res; 2009 May; 32(5):332-8. PubMed ID: 19300451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix metalloproteinases cleave the beta2-adrenergic receptor in spontaneously hypertensive rats.
    Rodrigues SF; Tran ED; Fortes ZB; Schmid-Schönbein GW
    Am J Physiol Heart Circ Physiol; 2010 Jul; 299(1):H25-35. PubMed ID: 20382857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of indapamide, a thiazide-like diuretic, on structure of cerebral arterioles in hypertensive rats.
    Chillon JM; Baumbach GL
    Hypertension; 2004 May; 43(5):1092-7. PubMed ID: 15007039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chronic nitric oxide synthase inhibition on cerebral arterioles in Wistar-Kyoto rats.
    Chillon JM; Baumbach GL
    J Hypertens; 2004 Mar; 22(3):529-34. PubMed ID: 15076158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway.
    Sun HJ; Chen D; Han Y; Zhou YB; Wang JJ; Chen Q; Li YH; Gao XY; Kang YM; Zhu GQ
    Neuropharmacology; 2016 Apr; 103():247-56. PubMed ID: 26746861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor-independent modulation of TGF-β-induced pro-fibrotic pathways by relaxin-2 in human primary tubular epithelial cells.
    Grampp S; Goppelt-Struebe M
    Cell Tissue Res; 2018 Dec; 374(3):619-627. PubMed ID: 30078103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amlodipine and Atorvastatin Improved Hypertensive Cardiac Remodeling through Regulation of MMPs/TIMPs in SHR Rats.
    Lu J; Hao J; Du H; Xiao B; Li Y; Yang X; Cui W
    Cell Physiol Biochem; 2016; 39(1):47-60. PubMed ID: 27322513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotid artery stenosis in hypertensive rats impairs dilatory pathways in parenchymal arterioles.
    Matin N; Fisher C; Jackson WF; Diaz-Otero JM; Dorrance AM
    Am J Physiol Heart Circ Physiol; 2018 Jan; 314(1):H122-H130. PubMed ID: 28842441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibulin-3 may improve vascular health through inhibition of MMP-2/9 and oxidative stress in spontaneously hypertensive rats.
    Lin Z; Wang Z; Li G; Li B; Xie W; Xiang D
    Mol Med Rep; 2016 May; 13(5):3805-12. PubMed ID: 27035767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxin signaling activates peroxisome proliferator-activated receptor gamma.
    Singh S; Bennett RG
    Mol Cell Endocrinol; 2010 Feb; 315(1-2):239-45. PubMed ID: 19712722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow.
    Vodstrcil LA; Tare M; Novak J; Dragomir N; Ramirez RJ; Wlodek ME; Conrad KP; Parry LJ
    FASEB J; 2012 Oct; 26(10):4035-44. PubMed ID: 22744867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxin, its receptor (RXFP1), and insulin-like peptide 4 expression through gestation and in placenta accreta.
    Goh W; Yamamoto SY; Thompson KS; Bryant-Greenwood GD
    Reprod Sci; 2013 Aug; 20(8):968-80. PubMed ID: 23302396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.