BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23783073)

  • 1. Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension.
    Chan SL; Sweet JG; Cipolla MJ
    FASEB J; 2013 Oct; 27(10):3917-27. PubMed ID: 23783073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor-γ.
    Chan SL; Cipolla MJ
    FASEB J; 2011 Sep; 25(9):3229-39. PubMed ID: 21602449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor.
    Pires PW; Jackson WF; Dorrance AM
    Am J Physiol Heart Circ Physiol; 2015 Jul; 309(1):H127-36. PubMed ID: 25910805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxin increased blood pressure and sympathetic activity in paraventricular nucleus of hypertensive rats via enhancing oxidative stress.
    Bian R; Gong J; Li J; Li P
    Peptides; 2021 Jul; 141():170550. PubMed ID: 33839220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS.
    Chow BS; Chew EG; Zhao C; Bathgate RA; Hewitson TD; Samuel CS
    PLoS One; 2012; 7(8):e42714. PubMed ID: 22936987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hypertension and carotid occlusion on brain parenchymal arteriole structure and reactivity.
    Sweet JG; Chan SL; Cipolla MJ
    J Appl Physiol (1985); 2015 Oct; 119(7):817-23. PubMed ID: 26294749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Captopril improves cerebrovascular structure and function in old hypertensive rats.
    Dupuis F; Atkinson J; Limiñana P; Chillon JM
    Br J Pharmacol; 2005 Feb; 144(3):349-56. PubMed ID: 15655534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxin reverses cardiac and renal fibrosis in spontaneously hypertensive rats.
    Lekgabe ED; Kiriazis H; Zhao C; Xu Q; Moore XL; Su Y; Bathgate RA; Du XJ; Samuel CS
    Hypertension; 2005 Aug; 46(2):412-8. PubMed ID: 15967869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expression of matrix metalloproteinase-13 is increased in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model.
    Ueno M; Wu B; Nishiyama A; Huang CL; Hosomi N; Kusaka T; Nakagawa T; Onodera M; Kido M; Sakamoto H
    Hypertens Res; 2009 May; 32(5):332-8. PubMed ID: 19300451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix metalloproteinases cleave the beta2-adrenergic receptor in spontaneously hypertensive rats.
    Rodrigues SF; Tran ED; Fortes ZB; Schmid-Schönbein GW
    Am J Physiol Heart Circ Physiol; 2010 Jul; 299(1):H25-35. PubMed ID: 20382857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of indapamide, a thiazide-like diuretic, on structure of cerebral arterioles in hypertensive rats.
    Chillon JM; Baumbach GL
    Hypertension; 2004 May; 43(5):1092-7. PubMed ID: 15007039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chronic nitric oxide synthase inhibition on cerebral arterioles in Wistar-Kyoto rats.
    Chillon JM; Baumbach GL
    J Hypertens; 2004 Mar; 22(3):529-34. PubMed ID: 15076158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway.
    Sun HJ; Chen D; Han Y; Zhou YB; Wang JJ; Chen Q; Li YH; Gao XY; Kang YM; Zhu GQ
    Neuropharmacology; 2016 Apr; 103():247-56. PubMed ID: 26746861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor-independent modulation of TGF-β-induced pro-fibrotic pathways by relaxin-2 in human primary tubular epithelial cells.
    Grampp S; Goppelt-Struebe M
    Cell Tissue Res; 2018 Dec; 374(3):619-627. PubMed ID: 30078103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amlodipine and Atorvastatin Improved Hypertensive Cardiac Remodeling through Regulation of MMPs/TIMPs in SHR Rats.
    Lu J; Hao J; Du H; Xiao B; Li Y; Yang X; Cui W
    Cell Physiol Biochem; 2016; 39(1):47-60. PubMed ID: 27322513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotid artery stenosis in hypertensive rats impairs dilatory pathways in parenchymal arterioles.
    Matin N; Fisher C; Jackson WF; Diaz-Otero JM; Dorrance AM
    Am J Physiol Heart Circ Physiol; 2018 Jan; 314(1):H122-H130. PubMed ID: 28842441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibulin-3 may improve vascular health through inhibition of MMP-2/9 and oxidative stress in spontaneously hypertensive rats.
    Lin Z; Wang Z; Li G; Li B; Xie W; Xiang D
    Mol Med Rep; 2016 May; 13(5):3805-12. PubMed ID: 27035767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxin signaling activates peroxisome proliferator-activated receptor gamma.
    Singh S; Bennett RG
    Mol Cell Endocrinol; 2010 Feb; 315(1-2):239-45. PubMed ID: 19712722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow.
    Vodstrcil LA; Tare M; Novak J; Dragomir N; Ramirez RJ; Wlodek ME; Conrad KP; Parry LJ
    FASEB J; 2012 Oct; 26(10):4035-44. PubMed ID: 22744867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxin, its receptor (RXFP1), and insulin-like peptide 4 expression through gestation and in placenta accreta.
    Goh W; Yamamoto SY; Thompson KS; Bryant-Greenwood GD
    Reprod Sci; 2013 Aug; 20(8):968-80. PubMed ID: 23302396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.