These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23784258)

  • 1. Negative quantum capacitance induced by midgap states in single-layer graphene.
    Wang L; Wang Y; Chen X; Zhu W; Zhu C; Wu Z; Han Y; Zhang M; Li W; He Y; Xiong W; Law KT; Su D; Wang N
    Sci Rep; 2013; 3():2041. PubMed ID: 23784258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magneto-Coulomb Drag and Hall Drag in Double-Layer Dirac Systems.
    Tse WK; Hu BY; Hong JN; MacDonald AH
    Phys Rev Lett; 2019 May; 122(18):186602. PubMed ID: 31144885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry breaking in the zero-energy Landau level in bilayer graphene.
    Zhao Y; Cadden-Zimansky P; Jiang Z; Kim P
    Phys Rev Lett; 2010 Feb; 104(6):066801. PubMed ID: 20366844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Hall effect near the charge neutrality point in a two-dimensional electron-hole system.
    Gusev GM; Olshanetsky EB; Kvon ZD; Mikhailov NN; Dvoretsky SA; Portal JC
    Phys Rev Lett; 2010 Apr; 104(16):166401. PubMed ID: 20482069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetism and Interaction-Induced Gap Opening in Graphene with Vacancies or Hydrogen Adatoms: Quantum Monte Carlo Study.
    Ulybyshev MV; Katsnelson MI
    Phys Rev Lett; 2015 Jun; 114(24):246801. PubMed ID: 26196994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Carrier Transport in Graphene/hBN Superlattices.
    Iwasaki T; Nakaharai S; Wakayama Y; Watanabe K; Taniguchi T; Morita Y; Moriyama S
    Nano Lett; 2020 Apr; 20(4):2551-2557. PubMed ID: 32186384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of the fractional quantum Hall effect in graphene.
    Bolotin KI; Ghahari F; Shulman MD; Stormer HL; Kim P
    Nature; 2009 Nov; 462(7270):196-9. PubMed ID: 19881489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the time-dependent charge neutrality point modulation of polymer-coated graphene field-effect transistors in an ambient environment.
    Norhakim N; Gunasilan T; Kesuma ZR; Hawari HF; Burhanudin ZA
    Nanotechnology; 2024 Oct; 35(50):. PubMed ID: 39284313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction phenomena in graphene seen through quantum capacitance.
    Yu GL; Jalil R; Belle B; Mayorov AS; Blake P; Schedin F; Morozov SV; Ponomarenko LA; Chiappini F; Wiedmann S; Zeitler U; Katsnelson MI; Geim AK; Novoselov KS; Elias DC
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3282-6. PubMed ID: 23401538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity.
    Karnatak P; Goswami S; Kochat V; Pal AN; Ghosh A
    Phys Rev Lett; 2014 Jul; 113(2):026601. PubMed ID: 25062215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap opening in the zeroth Landau level in gapped graphene: pseudo-Zeeman splitting in an angular magnetic field.
    Tahir M; Sabeeh K
    J Phys Condens Matter; 2012 Apr; 24(13):135005. PubMed ID: 22392807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Hall Effect Measurement of Spin-Orbit Coupling Strengths in Ultraclean Bilayer Graphene/WSe
    Wang D; Che S; Cao G; Lyu R; Watanabe K; Taniguchi T; Lau CN; Bockrath M
    Nano Lett; 2019 Oct; 19(10):7028-7034. PubMed ID: 31525877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-hole crossover in graphene quantum dots.
    Güttinger J; Stampfer C; Libisch F; Frey T; Burgdörfer J; Ihn T; Ensslin K
    Phys Rev Lett; 2009 Jul; 103(4):046810. PubMed ID: 19659388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacitance of carbon-based electrical double-layer capacitors.
    Ji H; Zhao X; Qiao Z; Jung J; Zhu Y; Lu Y; Zhang LL; MacDonald AH; Ruoff RS
    Nat Commun; 2014; 5():3317. PubMed ID: 24557361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant scattering by realistic impurities in graphene.
    Wehling TO; Yuan S; Lichtenstein AI; Geim AK; Katsnelson MI
    Phys Rev Lett; 2010 Jul; 105(5):056802. PubMed ID: 20867944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impurity effects on the zeroth pseudo-Landau level in twisted bilayer graphene.
    Ji H; Liu H; Xie XC
    J Phys Condens Matter; 2023 May; 35(32):. PubMed ID: 37141897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Hall criticality and localization in graphene with short-range impurities at the Dirac point.
    Gattenlöhner S; Hannes WR; Ostrovsky PM; Gornyi IV; Mirlin AD; Titov M
    Phys Rev Lett; 2014 Jan; 112(2):026802. PubMed ID: 24484036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the Quantum Capacitance of Graphene-Based Supercapacitors by the Doping and Co-Doping: First-Principles Calculations.
    Xu Q; Yang G; Fan X; Zheng W
    ACS Omega; 2019 Aug; 4(8):13209-13217. PubMed ID: 31460448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional-Dirac Surface States and Bulk Gap Probed via Quantum Capacitance in a Three-Dimensional Topological Insulator.
    Wang J; Gorini C; Richter K; Wang Z; Ando Y; Weiss D
    Nano Lett; 2020 Dec; 20(12):8493-8499. PubMed ID: 33174423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.