These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23784372)

  • 21. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere.
    Li YL; Sun S; Chan LS
    Ecol Evol; 2012 Jan; 3(1):115-25. PubMed ID: 23404127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland.
    Dauphas N; van Zuilen M; Wadhwa M; Davis AM; Marty B; Janney PE
    Science; 2004 Dec; 306(5704):2077-80. PubMed ID: 15604404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photosynthetic microbial mats in the 3,416-Myr-old ocean.
    Tice MM; Lowe DR
    Nature; 2004 Sep; 431(7008):549-52. PubMed ID: 15457255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Earth's youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean.
    Li ZQ; Zhang LC; Xue CJ; Zheng MT; Zhu MT; Robbins LJ; Slack JF; Planavsky NJ; Konhauser KO
    Sci Rep; 2018 Jul; 8(1):9970. PubMed ID: 29967405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep-water anoxygenic photosythesis in a ferruginous chemocline.
    Crowe SA; Maresca JA; Jones C; Sturm A; Henny C; Fowle DA; Cox RP; Delong EF; Canfield DE
    Geobiology; 2014 Jul; 12(4):322-39. PubMed ID: 24923179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert.
    Friedmann EI; Weed R
    Science; 1987 May; 236(4802):703-5. PubMed ID: 11536571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection.
    Wierzchos J; Sancho LG; Ascaso C
    Environ Microbiol; 2005 Apr; 7(4):566-75. PubMed ID: 15816933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations.
    Chan CS; Emerson D; Luther GW
    Geobiology; 2016 Sep; 14(5):509-28. PubMed ID: 27392195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial dissolution of hematite and associated cellular fossilization by reduced iron phases: a study of ancient microbe-mineral surface interactions.
    Kolo K; Konhauser K; Krumbein WE; Ingelgem YV; Hubin A; Claeys P
    Astrobiology; 2009 Oct; 9(8):777-96. PubMed ID: 19845448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea.
    Brocks JJ; Love GD; Summons RE; Knoll AH; Logan GA; Bowden SA
    Nature; 2005 Oct; 437(7060):866-70. PubMed ID: 16208367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The onset of widespread marine red beds and the evolution of ferruginous oceans.
    Song H; Jiang G; Poulton SW; Wignall PB; Tong J; Song H; An Z; Chu D; Tian L; She Z; Wang C
    Nat Commun; 2017 Aug; 8(1):399. PubMed ID: 28855507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments.
    Camacho A; Walter XA; Picazo A; Zopfi J
    Front Microbiol; 2017; 8():323. PubMed ID: 28377745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron-oxidizing bacteria: an environmental and genomic perspective.
    Emerson D; Fleming EJ; McBeth JM
    Annu Rev Microbiol; 2010; 64():561-83. PubMed ID: 20565252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the biogenicity of Fe-oxyhydroxide filaments in silicified low-temperature hydrothermal deposits: Implications for the identification of Fe-oxidizing bacteria in the rock record.
    Johannessen KC; McLoughlin N; Vullum PE; Thorseth IH
    Geobiology; 2020 Jan; 18(1):31-53. PubMed ID: 31532578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hematite-coated microfossils: primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic?
    Shapiro RS; Konhauser KO
    Geobiology; 2015 May; 13(3):209-24. PubMed ID: 25639940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Geological microbiology].
    Ivanov MV; Karavaĭko GI
    Mikrobiologiia; 2004; 73(5):581-97. PubMed ID: 15595512
    [No Abstract]   [Full Text] [Related]  

  • 37. Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin.
    Llirós M; García-Armisen T; Darchambeau F; Morana C; Triadó-Margarit X; Inceoğlu Ö; Borrego CM; Bouillon S; Servais P; Borges AV; Descy JP; Canfield DE; Crowe SA
    Sci Rep; 2015 Sep; 5():13803. PubMed ID: 26348272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt.
    Lepot K; Philippot P; Benzerara K; Wang GY
    Geobiology; 2009 Sep; 7(4):393-402. PubMed ID: 19656217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lower Triassic stromatolites in Luodian County, Guizhou Province, South China: evidence for the protracted devastation of the marine environments.
    Ezaki Y; Liu JB; Adachi N
    Geobiology; 2012 Jan; 10(1):48-59. PubMed ID: 22118290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution.
    Robbins LJ; Lalonde SV; Saito MA; Planavsky NJ; Mloszewska AM; Pecoits E; Scott C; Dupont CL; Kappler A; Konhauser KO
    Geobiology; 2013 Jul; 11(4):295-306. PubMed ID: 23601652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.