These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Chueh WC; Haile SM Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3269-94. PubMed ID: 20566511 [TBL] [Abstract][Full Text] [Related]
27. Examination of oxygen vacancy formation in Mn-doped CeO2 (111) using DFT+U and the hybrid functional HSE06. Krcha MD; Janik MJ Langmuir; 2013 Aug; 29(32):10120-31. PubMed ID: 23848253 [TBL] [Abstract][Full Text] [Related]
28. Surface studies of gas sensing metal oxides. Batzill M; Diebold U Phys Chem Chem Phys; 2007 May; 9(19):2307-18. PubMed ID: 17492094 [TBL] [Abstract][Full Text] [Related]
29. Effects of surface heterogeneity on the adsorption of CO₂ in microporous carbons. Liu Y; Wilcox J Environ Sci Technol; 2012 Feb; 46(3):1940-7. PubMed ID: 22216997 [TBL] [Abstract][Full Text] [Related]
30. Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? Keskin S; van Heest TM; Sholl DS ChemSusChem; 2010 Aug; 3(8):879-91. PubMed ID: 20730980 [TBL] [Abstract][Full Text] [Related]
31. Mixed ceria-based metal oxides biosensor for operation in oxygen restrictive environments. Njagi J; Ispas C; Andreescu S Anal Chem; 2008 Oct; 80(19):7266-74. PubMed ID: 18720950 [TBL] [Abstract][Full Text] [Related]
32. CO(2) adsorption on supported molecular amidine systems on activated carbon. Alesi WR; Gray M; Kitchin JR ChemSusChem; 2010 Aug; 3(8):948-56. PubMed ID: 20730982 [TBL] [Abstract][Full Text] [Related]
33. Dopant-mediated oxygen vacancy tuning in ceria nanoparticles. Babu S; Thanneeru R; Inerbaev T; Day R; Masunov AE; Schulte A; Seal S Nanotechnology; 2009 Feb; 20(8):085713. PubMed ID: 19417474 [TBL] [Abstract][Full Text] [Related]
34. Comparison of new microemulsion prepared "Pt-in-Ceria" catalyst with conventional "Pt-on-Ceria" catalyst for water-gas shift reaction. Yeung CM; Meunier F; Burch R; Thompsett D; Tsang SC J Phys Chem B; 2006 May; 110(17):8540-3. PubMed ID: 16640402 [TBL] [Abstract][Full Text] [Related]
35. Raman spectroscopy as a probe of temperature and oxidation state for gadolinium-doped ceria used in solid oxide fuel cells. Maher RC; Cohen LF; Lohsoontorn P; Brett DJ; Brandon NP J Phys Chem A; 2008 Feb; 112(7):1497-501. PubMed ID: 18225868 [TBL] [Abstract][Full Text] [Related]
36. Challenges of electric swing adsorption for CO(2) capture. Grande CA; Ribeiro RP; Rodrigues AE ChemSusChem; 2010 Aug; 3(8):892-8. PubMed ID: 20623725 [TBL] [Abstract][Full Text] [Related]
37. Co-doped ceria: tendency towards ferromagnetism driven by oxygen vacancies. Ferrari V; Llois AM; Vildosola V J Phys Condens Matter; 2010 Jul; 22(27):276002. PubMed ID: 21399268 [TBL] [Abstract][Full Text] [Related]
38. Synthesis and characterization of functional thienyl-phosphine microporous polymers for carbon dioxide capture. Chen X; Qiao S; Du Z; Zhou Y; Yang R Macromol Rapid Commun; 2013 Jul; 34(14):1181-5. PubMed ID: 23757097 [TBL] [Abstract][Full Text] [Related]
39. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Alvarez PM; Beltrán FJ; Gómez-Serrano V; Jaramillo J; Rodríguez EM Water Res; 2004 Apr; 38(8):2155-65. PubMed ID: 15087197 [TBL] [Abstract][Full Text] [Related]