These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23784963)

  • 1. Supramolecular self-assembly of N-acetyl-capped β-peptides leads to nano- to macroscale fiber formation.
    Del Borgo MP; Mechler AI; Traore D; Forsyth C; Wilce JA; Wilce MC; Aguilar MI; Perlmutter P
    Angew Chem Int Ed Engl; 2013 Aug; 52(32):8266-70. PubMed ID: 23784963
    [No Abstract]   [Full Text] [Related]  

  • 2. Supramolecular structures of amyloid-related peptides in an ambient water nanofilm.
    Ye M; Zhang Y; Li H; Xie M; Hu J
    J Phys Chem B; 2010 Dec; 114(48):15759-65. PubMed ID: 21077660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular chemical biology; bioactive synthetic self-assemblies.
    Petkau-Milroy K; Brunsveld L
    Org Biomol Chem; 2013 Jan; 11(2):219-32. PubMed ID: 23160566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular control of self-assembling terthiophene-peptide conjugates through the amino acid side chain.
    Lehrman JA; Cui H; Tsai WW; Moyer TJ; Stupp SI
    Chem Commun (Camb); 2012 Oct; 48(78):9711-3. PubMed ID: 22914175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular self-assembly: another brick in the wall.
    Zhang S
    Nat Nanotechnol; 2006 Dec; 1(3):169-70. PubMed ID: 18654179
    [No Abstract]   [Full Text] [Related]  

  • 6. Hierarchical supramolecular spinning of nanofibers in a microfluidic channel: tuning nanostructures at a dynamic interface.
    Numata M; Takigami Y; Takayama M; Kozawa T; Hirose N
    Chemistry; 2012 Oct; 18(41):13008-17. PubMed ID: 22945551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular self-assembly: bioactive nanostructures branch out.
    Gazit E
    Nat Nanotechnol; 2008 Jan; 3(1):8-9. PubMed ID: 18654439
    [No Abstract]   [Full Text] [Related]  

  • 8. Supramolecular self-assembly codes for functional structures.
    Palmer LC; Velichko YS; de la Cruz MO; Stupp SI
    Philos Trans A Math Phys Eng Sci; 2007 Jun; 365(1855):1417-33. PubMed ID: 17428769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions.
    Yu Z; Erbas A; Tantakitti F; Palmer LC; Jackman JA; Olvera de la Cruz M; Cho NJ; Stupp SI
    J Am Chem Soc; 2017 Jun; 139(23):7823-7830. PubMed ID: 28571316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanopatterning peptides as bifunctional inks for templated assembly.
    Wei JH; Kacar T; Tamerler C; Sarikaya M; Ginger DS
    Small; 2009 Mar; 5(6):689-93. PubMed ID: 19267336
    [No Abstract]   [Full Text] [Related]  

  • 11. Supramolecular electronics; nanowires from self-assembled pi-conjugated systems.
    Schenning AP; Meijer EW
    Chem Commun (Camb); 2005 Jul; (26):3245-58. PubMed ID: 15983639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Playing with peptides: how to build a supramolecular peptide nanostructure by exploiting helix···helix macrodipole interactions.
    Gatto E; Porchetta A; Scarselli M; De Crescenzi M; Formaggio F; Toniolo C; Venanzi M
    Langmuir; 2012 Feb; 28(5):2817-26. PubMed ID: 22214420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protamine-induced condensation of peptide nanofilaments into twisted bundles with controlled helical geometry.
    Wang J; Jia J; Wang Y; Xing Q; Peng X; Qi W; Su R; He Z
    J Pept Sci; 2019 Jul; 25(7):e3176. PubMed ID: 31309673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopatterning the surface with ordered supramolecular architectures of N(9)-alkylated guanines: STM reveals.
    Ciesielski A; Perone R; Pieraccini S; Spada GP; Samorì P
    Chem Commun (Camb); 2010 Jul; 46(25):4493-5. PubMed ID: 20485778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular assembly: nanofibre whirlpools.
    Amabilino DB
    Nat Mater; 2007 Dec; 6(12):924-5. PubMed ID: 18059296
    [No Abstract]   [Full Text] [Related]  

  • 16. Solvent-free, direct synthesis of supramolecular nano-capsules.
    Antesberger J; Cave GW; Ferrarelli MC; Heaven MW; Raston CL; Atwood JL
    Chem Commun (Camb); 2005 Feb; (7):892-4. PubMed ID: 15700072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalytic self-assembly of supramolecular charge-transfer nanostructures based on n-type semiconductor-appended peptides.
    Nalluri SK; Berdugo C; Javid N; Frederix PW; Ulijn RV
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5882-7. PubMed ID: 24788665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal interface resistance: crossover from nanoscale to macroscale.
    Persson BN
    J Phys Condens Matter; 2014 Jan; 26(1):015009. PubMed ID: 24304968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration-dependent supramolecular engineering of hydrogen-bonded nanostructures at surfaces: predicting self-assembly in 2D.
    Ciesielski A; Szabelski PJ; Rżysko W; Cadeddu A; Cook TR; Stang PJ; Samorì P
    J Am Chem Soc; 2013 May; 135(18):6942-50. PubMed ID: 23590179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function follows form: exploring two-dimensional supramolecular assembly at surfaces.
    Tait SL
    ACS Nano; 2008 Apr; 2(4):617-21. PubMed ID: 19206590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.