BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23785064)

  • 1. Stereoselective inhibition of CYP2C19 and CYP3A4 by fluoxetine and its metabolite: implications for risk assessment of multiple time-dependent inhibitor systems.
    Lutz JD; VandenBrink BM; Babu KN; Nelson WL; Kunze KL; Isoherranen N
    Drug Metab Dispos; 2013 Dec; 41(12):2056-65. PubMed ID: 23785064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4.
    Sager JE; Lutz JD; Foti RS; Davis C; Kunze KL; Isoherranen N
    Clin Pharmacol Ther; 2014 Jun; 95(6):653-62. PubMed ID: 24569517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of CYP2C19 and CYP3A4 by omeprazole metabolites and their contribution to drug-drug interactions.
    Shirasaka Y; Sager JE; Lutz JD; Davis C; Isoherranen N
    Drug Metab Dispos; 2013 Jul; 41(7):1414-24. PubMed ID: 23620487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential time- and NADPH-dependent inhibition of CYP2C19 by enantiomers of fluoxetine.
    Stresser DM; Mason AK; Perloff ES; Ho T; Crespi CL; Dandeneau AA; Morgan L; Dehal SS
    Drug Metab Dispos; 2009 Apr; 37(4):695-8. PubMed ID: 19144769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine.
    Ring BJ; Eckstein JA; Gillespie JS; Binkley SN; VandenBranden M; Wrighton SA
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1044-50. PubMed ID: 11356927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of in vivo drug-drug interactions from in vitro data : factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4.
    Brown HS; Galetin A; Hallifax D; Houston JB
    Clin Pharmacokinet; 2006; 45(10):1035-50. PubMed ID: 16984215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine.
    Scordo MG; Spina E; Dahl ML; Gatti G; Perucca E
    Basic Clin Pharmacol Toxicol; 2005 Nov; 97(5):296-301. PubMed ID: 16236141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of human drug-drug interactions from time-dependent inactivation of CYP3A4 in primary hepatocytes using a population-based simulator.
    Xu L; Chen Y; Pan Y; Skiles GL; Shou M
    Drug Metab Dispos; 2009 Dec; 37(12):2330-9. PubMed ID: 19773538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro metabolism of the opioid tilidine and interaction of tilidine and nortilidine with CYP3A4, CYP2C19, and CYP2D6.
    Weiss J; Sawa E; Riedel KD; Haefeli WE; Mikus G
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Sep; 378(3):275-82. PubMed ID: 18516595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of CYP2C19 genotype and CYP2C9 on fluoxetine N-demethylation in human liver microsomes.
    Liu ZQ; Shu Y; Huang SL; Wang LS; He N; Zhou HH
    Acta Pharmacol Sin; 2001 Jan; 22(1):85-90. PubMed ID: 11730569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents.
    von Moltke LL; Greenblatt DJ; Schmider J; Duan SX; Wright CE; Harmatz JS; Shader RI
    J Clin Pharmacol; 1996 Sep; 36(9):783-91. PubMed ID: 8889898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent inhibition (TDI) of CYP3A4 and CYP2C9 by noscapine potentially explains clinical noscapine-warfarin interaction.
    Fang ZZ; Zhang YY; Ge GB; Huo H; Liang SC; Yang L
    Br J Clin Pharmacol; 2010 Feb; 69(2):193-9. PubMed ID: 20233183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically based pharmacokinetic modelling to predict drug-drug interactions for encorafenib. Part I. Model building, validation, and prospective predictions with enzyme inhibitors, inducers, and transporter inhibitors.
    Kollipara S; Ahmed T; Praveen S
    Xenobiotica; 2023 May; 53(5):366-381. PubMed ID: 37609899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.
    Hanson KL; VandenBrink BM; Babu KN; Allen KE; Nelson WL; Kunze KL
    Drug Metab Dispos; 2010 Jun; 38(6):963-72. PubMed ID: 20200233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes.
    Rochat B; Amey M; Gillet M; Meyer UA; Baumann P
    Pharmacogenetics; 1997 Feb; 7(1):1-10. PubMed ID: 9110356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite.
    Kazui M; Nishiya Y; Ishizuka T; Hagihara K; Farid NA; Okazaki O; Ikeda T; Kurihara A
    Drug Metab Dispos; 2010 Jan; 38(1):92-9. PubMed ID: 19812348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Physiologically Based Pharmacokinetic Model of Voriconazole Integrating Time-Dependent Inhibition of CYP3A4, Genetic Polymorphisms of CYP2C19 and Predictions of Drug-Drug Interactions.
    Li X; Frechen S; Moj D; Lehr T; Taubert M; Hsin CH; Mikus G; Neuvonen PJ; Olkkola KT; Saari TI; Fuhr U
    Clin Pharmacokinet; 2020 Jun; 59(6):781-808. PubMed ID: 31853755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantiomer/enantiomer interactions between the S- and R- isomers of omeprazole in human cytochrome P450 enzymes: major role of CYP2C19 and CYP3A4.
    Li XQ; Weidolf L; Simonsson R; Andersson TB
    J Pharmacol Exp Ther; 2005 Nov; 315(2):777-87. PubMed ID: 16093273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of CYP3A4 and CYP2C19 in the stereoselective metabolism of lansoprazole by human liver microsomes.
    Katsuki H; Hamada A; Nakamura C; Arimori K; Nakano M
    Eur J Clin Pharmacol; 2001 Dec; 57(10):709-15. PubMed ID: 11829200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantiomeric metabolic interactions and stereoselective human methadone metabolism.
    Totah RA; Allen KE; Sheffels P; Whittington D; Kharasch ED
    J Pharmacol Exp Ther; 2007 Apr; 321(1):389-99. PubMed ID: 17259447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.