These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 23785137)
1. Reward-modulated motor information in identified striatum neurons. Isomura Y; Takekawa T; Harukuni R; Handa T; Aizawa H; Takada M; Fukai T J Neurosci; 2013 Jun; 33(25):10209-20. PubMed ID: 23785137 [TBL] [Abstract][Full Text] [Related]
2. Chemogenetic inhibition in the dorsal striatum reveals regional specificity of direct and indirect pathway control of action sequencing. Garr E; Delamater AR Neurobiol Learn Mem; 2020 Mar; 169():107169. PubMed ID: 31972244 [TBL] [Abstract][Full Text] [Related]
3. Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Takada M; Tokuno H; Hamada I; Inase M; Ito Y; Imanishi M; Hasegawa N; Akazawa T; Hatanaka N; Nambu A Eur J Neurosci; 2001 Nov; 14(10):1633-50. PubMed ID: 11860458 [TBL] [Abstract][Full Text] [Related]
4. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Yung KK; Bolam JP; Smith AD; Hersch SM; Ciliax BJ; Levey AI Neuroscience; 1995 Apr; 65(3):709-30. PubMed ID: 7609871 [TBL] [Abstract][Full Text] [Related]
5. Differential contributions of striatal dopamine D1 and D2 receptors to component processes of value-based decision making. Verharen JPH; Adan RAH; Vanderschuren LJMJ Neuropsychopharmacology; 2019 Dec; 44(13):2195-2204. PubMed ID: 31254972 [TBL] [Abstract][Full Text] [Related]
6. Electrophysiological and behavioral output of the rat basal ganglia after intrastriatal infusion of d-amphetamine: lack of support for the basal ganglia model. Waszczak BL; Martin L; Boucher N; Zahr N; Sikes RW; Stellar JR Brain Res; 2001 Nov; 920(1-2):170-82. PubMed ID: 11716823 [TBL] [Abstract][Full Text] [Related]
7. Dopamine differentially modulates the excitability of striatal neurons of the direct and indirect pathways in lamprey. Ericsson J; Stephenson-Jones M; Pérez-Fernández J; Robertson B; Silberberg G; Grillner S J Neurosci; 2013 May; 33(18):8045-54. PubMed ID: 23637194 [TBL] [Abstract][Full Text] [Related]
8. Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections. Soma S; Saiki A; Yoshida J; Ríos A; Kawabata M; Sakai Y; Isomura Y J Neurosci; 2017 Nov; 37(45):10904-10916. PubMed ID: 28972128 [TBL] [Abstract][Full Text] [Related]
9. Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions. Kimura R; Saiki A; Fujiwara-Tsukamoto Y; Sakai Y; Isomura Y J Physiol; 2017 Jan; 595(1):385-413. PubMed ID: 27488936 [TBL] [Abstract][Full Text] [Related]
10. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Hollerman JR; Tremblay L; Schultz W Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648 [TBL] [Abstract][Full Text] [Related]
11. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Surmeier DJ; Eberwine J; Wilson CJ; Cao Y; Stefani A; Kitai ST Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10178-82. PubMed ID: 1332033 [TBL] [Abstract][Full Text] [Related]
12. Differential entrainment and learning-related dynamics of spike and local field potential activity in the sensorimotor and associative striatum. Thorn CA; Graybiel AM J Neurosci; 2014 Feb; 34(8):2845-59. PubMed ID: 24553926 [TBL] [Abstract][Full Text] [Related]
14. Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements. Isomura Y; Harukuni R; Takekawa T; Aizawa H; Fukai T Nat Neurosci; 2009 Dec; 12(12):1586-93. PubMed ID: 19898469 [TBL] [Abstract][Full Text] [Related]
15. Distinct temporal activity patterns in the rat M1 and red nucleus during skilled versus unskilled limb movement. Hermer-Vazquez L; Hermer-Vazquez R; Moxon KA; Kuo KH; Viau V; Zhan Y; Chapin JK Behav Brain Res; 2004 Apr; 150(1-2):93-107. PubMed ID: 15033283 [TBL] [Abstract][Full Text] [Related]
16. Chemogenetic Targeting of Dorsomedial Direct-pathway Striatal Projection Neurons Selectively Elicits Rotational Behavior in Mice. Bay Kønig A; Ciriachi C; Gether U; Rickhag M Neuroscience; 2019 Mar; 401():106-116. PubMed ID: 30668973 [TBL] [Abstract][Full Text] [Related]
17. Striatal indirect pathway contributes to selection accuracy of learned motor actions. Nishizawa K; Fukabori R; Okada K; Kai N; Uchigashima M; Watanabe M; Shiota A; Ueda M; Tsutsui Y; Kobayashi K J Neurosci; 2012 Sep; 32(39):13421-32. PubMed ID: 23015433 [TBL] [Abstract][Full Text] [Related]
18. Selective stimulation of striatal dopamine receptors of the D1- or D2-class causes opposite changes of fos expression in the rat cerebral cortex. Blandini F; Fancellu R; Orzi F; Conti G; Greco R; Tassorelli C; Nappi G Eur J Neurosci; 2003 Feb; 17(4):763-70. PubMed ID: 12603266 [TBL] [Abstract][Full Text] [Related]
19. Dopamine's Effects on Corticostriatal Synapses during Reward-Based Behaviors. Bamford NS; Wightman RM; Sulzer D Neuron; 2018 Feb; 97(3):494-510. PubMed ID: 29420932 [TBL] [Abstract][Full Text] [Related]
20. Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice. Ren K; Guo B; Dai C; Yao H; Sun T; Liu X; Bai Z; Wang W; Wu S Front Neural Circuits; 2017; 11():57. PubMed ID: 28860974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]