BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23785371)

  • 1. Does suberin accumulation in plant roots contribute to waterlogging tolerance?
    Watanabe K; Nishiuchi S; Kulichikhin K; Nakazono M
    Front Plant Sci; 2013; 4():178. PubMed ID: 23785371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of Radial Oxygen Loss Is Associated With Exodermal Suberin Along Adventitious Roots of Annual Wild Species of
    Ejiri M; Shiono K
    Front Plant Sci; 2019; 10():254. PubMed ID: 30915090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous abscisic acid induces the formation of a suberized barrier to radial oxygen loss in adventitious roots of barley (Hordeum vulgare).
    Shiono K; Matsuura H
    Ann Bot; 2024 May; 133(7):931-940. PubMed ID: 38448365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low nitrate under waterlogging triggers exodermal suberization to form a barrier to radial oxygen loss in rice roots.
    Shiono K; Ejiri M; Sawazaki Y; Egishi Y; Tsunoda T
    Plant Physiol; 2024 May; ():. PubMed ID: 38761404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia.
    Ejiri M; Fukao T; Miyashita T; Shiono K
    Breed Sci; 2021 Feb; 71(1):40-50. PubMed ID: 33762875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3.
    Watanabe K; Takahashi H; Sato S; Nishiuchi S; Omori F; Malik AI; Colmer TD; Mano Y; Nakazono M
    Plant Cell Environ; 2017 Feb; 40(2):304-316. PubMed ID: 27762444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima.
    Soukup A; Armstrong W; Schreiber L; Franke R; Votrubová O
    New Phytol; 2007; 173(2):264-78. PubMed ID: 17204074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicola.
    Jiménez JC; Clode PL; Signorelli S; Veneklaas EJ; Colmer TD; Kotula L
    J Exp Bot; 2021 Apr; 72(8):3279-3293. PubMed ID: 33543268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa).
    Shiono K; Yoshikawa M; Kreszies T; Yamada S; Hojo Y; Matsuura T; Mori IC; Schreiber L; Yoshioka T
    New Phytol; 2022 Jan; 233(2):655-669. PubMed ID: 34725822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa).
    Shiono K; Yamauchi T; Yamazaki S; Mohanty B; Malik AI; Nagamura Y; Nishizawa NK; Tsutsumi N; Colmer TD; Nakazono M
    J Exp Bot; 2014 Sep; 65(17):4795-806. PubMed ID: 24913626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).
    Shiono K; Ando M; Nishiuchi S; Takahashi H; Watanabe K; Nakamura M; Matsuo Y; Yasuno N; Yamanouchi U; Fujimoto M; Takanashi H; Ranathunge K; Franke RB; Shitan N; Nishizawa NK; Takamure I; Yano M; Tsutsumi N; Schreiber L; Yazaki K; Nakazono M; Kato K
    Plant J; 2014 Oct; 80(1):40-51. PubMed ID: 25041515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths.
    Shiono K; Ogawa S; Yamazaki S; Isoda H; Fujimura T; Nakazono M; Colmer TD
    Ann Bot; 2011 Jan; 107(1):89-99. PubMed ID: 21097947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize.
    Pedersen O; Nakayama Y; Yasue H; Kurokawa Y; Takahashi H; Heidi Floytrup A; Omori F; Mano Y; David Colmer T; Nakazono M
    New Phytol; 2021 Jan; 229(1):94-105. PubMed ID: 31990995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some Accessions of Amazonian Wild Rice (
    Ejiri M; Sawazaki Y; Shiono K
    Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32668711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution.
    Kotula L; Ranathunge K; Schreiber L; Steudle E
    J Exp Bot; 2009; 60(7):2155-67. PubMed ID: 19443620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix).
    Schreiber L; Franke R; Hartmann KD; Ranathunge K; Steudle E
    J Exp Bot; 2005 May; 56(415):1427-36. PubMed ID: 15809280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The barrier to radial oxygen loss protects roots against hydrogen sulphide intrusion and its toxic effect.
    Peralta Ogorek LL; Takahashi H; Nakazono M; Pedersen O
    New Phytol; 2023 Jun; 238(5):1825-1837. PubMed ID: 36928886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice acclimation to soil flooding: Low concentrations of organic acids can trigger a barrier to radial oxygen loss in roots.
    Colmer TD; Kotula L; Malik AI; Takahashi H; Konnerup D; Nakazono M; Pedersen O
    Plant Cell Environ; 2019 Jul; 42(7):2183-2197. PubMed ID: 30989660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.).
    Zimmermann HM; Hartmann K; Schreiber L; Steudle E
    Planta; 2000 Jan; 210(2):302-11. PubMed ID: 10664137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.