These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23785710)

  • 1. Enzyme-responsive supramolecular polymers by complexation of bis(p-sulfonatocalixarenes) with suberyl dicholine-based pseudorotaxane.
    Guo DS; Zhang TX; Wang YX; Liu Y
    Chem Commun (Camb); 2013 Aug; 49(60):6779-81. PubMed ID: 23785710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholinesterase-responsive supramolecular vesicle.
    Guo DS; Wang K; Wang YX; Liu Y
    J Am Chem Soc; 2012 Jun; 134(24):10244-50. PubMed ID: 22686862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of hydrolysis of dicholine esters with long polymethylene chain by human butyrylcholinesterase.
    Grigoryan H; Halebyan G; Lefebvre B; Brasme B; Masson P
    Biochim Biophys Acta; 2008 Nov; 1784(11):1818-24. PubMed ID: 18778798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release.
    Sun YL; Zhou Y; Li QL; Yang YW
    Chem Commun (Camb); 2013 Oct; 49(79):9033-5. PubMed ID: 23982479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of Pharmaceutical Properties of Isoprenoid Compounds through the Formation of Cyclodextrin Pseudorotaxane-Like Supramolecules.
    Higashi T; Tanaka H; Yoshimatsu A; Ikeda H; Arima K; Honjo M; Iwamoto C; Motoyama K; Arima H
    Chem Pharm Bull (Tokyo); 2016; 64(4):340-5. PubMed ID: 26852798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence stereoisomerism in calixarene-based pseudo[3]rotaxanes.
    Talotta C; Gaeta C; Pierro T; Neri P
    Org Lett; 2011 Apr; 13(8):2098-101. PubMed ID: 21425767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Supramolecular Surface Attachment of Enzyme-Polymer Conjugates for the Design of Biocatalytic Filtration Membranes.
    Moridi N; Corvini PF; Shahgaldian P
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14800-4. PubMed ID: 26461451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril.
    Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J
    J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and biological evaluation of multivalent carbohydrate ligands obtained by click assembly of pseudo-rotaxanes.
    Chwalek M; Auzély R; Fort S
    Org Biomol Chem; 2009 Apr; 7(8):1680-8. PubMed ID: 19343257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.
    Li J; Loh XJ
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1000-17. PubMed ID: 18413280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal nanoparticles and supramolecular macrocycles: a tale of synergy.
    Montes-García V; Pérez-Juste J; Pastoriza-Santos I; Liz-Marzán LM
    Chemistry; 2014 Aug; 20(35):10874-83. PubMed ID: 25043786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular cyclodextrin pseudorotaxane hydrogels: a candidate for sustained release?
    Chee PL; Prasad A; Fang X; Owh C; Yeo VJ; Loh XJ
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():6-12. PubMed ID: 24863190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polypseudorotaxanes constructed from pillar[5]arenes and polyamides by interfacial polymerization.
    Ogoshi T; Yoshiki M; Kakuta T; Yamagishi TA; Mizuno M
    Chem Commun (Camb); 2021 Nov; 57(93):12468-12471. PubMed ID: 34730128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separated and aligned molecular fibres in solid state self-assemblies of cyclodextrin [2]rotaxanes.
    Onagi H; Carrozzini B; Cascarano GL; Easton CJ; Edwards AJ; Lincoln SF; Rae AD
    Chemistry; 2003 Dec; 9(24):5971-7. PubMed ID: 14679509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotaxane-type resorcinarene tetramers as histone-sensing fluorescent receptors.
    Hayashida O; Uchiyama M
    Org Biomol Chem; 2008 Sep; 6(17):3166-70. PubMed ID: 18698476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hydrolysis of dicholine ester of dicarboxylic acids with true cholinesterase and pseudocholinesterase].
    PEVZNER FV
    Farmakol Toksikol; 1955; 18(2):27-31. PubMed ID: 14391388
    [No Abstract]   [Full Text] [Related]  

  • 17. An oriented handcuff rotaxane.
    Ciao R; Talotta C; Gaeta C; Margarucci L; Casapullo A; Neri P
    Org Lett; 2013 Nov; 15(22):5694-7. PubMed ID: 24180584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclodextrin rotaxanes and polyrotaxanes.
    Wenz G; Han BH; Müller A
    Chem Rev; 2006 Mar; 106(3):782-817. PubMed ID: 16522009
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of achiral calixarenes on chiral separation of propranolol-HCl and brompheniramine maleate in capillary electrophoresis using cyclodextrin as chiral selector.
    Hashem H; Kinzig M; Jira T
    Pharmazie; 2008 Apr; 63(4):256-62. PubMed ID: 18468383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The anticholinesterase effects of polymethylene-dicarbamic acid dicholine esters].
    HERZFELD E; STUMF C
    Arch Int Pharmacodyn Ther; 1955 Jan; 100(3-4):391-400. PubMed ID: 14350859
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.