These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 237862)

  • 1. Mitochondrial enzymatic adaptation of skeletal muscle to endurance training.
    Benzi G; Panceri P; de Bernardi M; Villa R; Arcelli E; D'Angelo L; Arrigoni E; Bertè F
    J Appl Physiol; 1975 Apr; 38(4):565-9. PubMed ID: 237862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drugs and brain mitochondrial enzymatic activities during post-natal development in rat.
    Benzi G; Villa RF; Pastoris O; Arrigoni E; Strada P; Ogliari M; Montani A
    Farmaco Sci; 1976 Jun; 31(6):412-7. PubMed ID: 6312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of training and pharmacological treatment on muscular enzymatic activities.
    Benzi G; Villa RF; Montani A; Pastoris O; Arcelli E; Strada P; Arrigoni E
    J Pharm Sci; 1977 Sep; 66(9):1278-81. PubMed ID: 20493
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of hypoxia on enzyme activities in skeletal muscle of rats of different ages. An attempt at pharmacological treatment.
    Pastoris O; Foppa P; Catapano M; Dossena M
    Pharmacol Res; 1995 Dec; 32(6):375-81. PubMed ID: 8736489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Frog skeletal muscle microsomal and mitochondrial NADH-cytochrome c reductase activity].
    Esyrev OV; Uspanova ZhK
    Tsitologiia; 1973 May; 15(5):563-9. PubMed ID: 4361067
    [No Abstract]   [Full Text] [Related]  

  • 6. [Effect of intermittent hypoxic training on indices of adaptation to hypoxia in rats during physical exertion].
    Havenauskas BL; Man'kovs'ka IM; Nosar VI; Nazarenko AI; Bratus' LV
    Fiziol Zh (1994); 2004; 50(6):32-42. PubMed ID: 15732757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic parameters of cytochrome c oxidase in rat skeletal muscle: effect of endurance training.
    Soussi B; Idström JP; Schersten T; Bylund-Fellenius AC
    Acta Physiol Scand; 1989 Mar; 135(3):373-9. PubMed ID: 2538997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle metabolism investigated at rest and during exercise and/or pharmacological treatment by vasodilators.
    Benzi G; Arrigoni E; Pastoris O; Villa R
    Farmaco Sci; 1976 Jan; 31(1):3-20. PubMed ID: 7472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity.
    Henriksson J; Reitman JS
    Acta Physiol Scand; 1977 Jan; 99(1):91-7. PubMed ID: 190867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-adrenergic blockade and training in human subjects: effects on muscle metabolic capacity.
    Svedenhag J; Henriksson J; Juhlin-Dannfelt A
    Am J Physiol; 1984 Sep; 247(3 Pt 1):E305-11. PubMed ID: 6089581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Work performance in the iron-deficient rat: improved endurance with exercise training.
    Perkkiö MV; Jansson LT; Henderson S; Refino C; Brooks GA; Dallman PR
    Am J Physiol; 1985 Sep; 249(3 Pt 1):E306-11. PubMed ID: 2994490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enzyme, electron microscopic and polarographic characteristics of isolated rat brain mitochondria. III. Quantitative assessment of their distribution in fractions of the homogenate].
    Shpakov AA; Dudchenko AM; Dudchenko VK
    Tsitologiia; 1976 Mar; 18(3):312-8. PubMed ID: 181880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic and genetic adaptation of soleus muscle mitochondria to physical training in rats.
    Murakami T; Shimomura Y; Fujitsuka N; Nakai N; Sugiyama S; Ozawa T; Sokabe M; Horai S; Tokuyama K; Suzuki M
    Am J Physiol; 1994 Sep; 267(3 Pt 1):E388-95. PubMed ID: 7943219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endurance training increases the expression of mitochondrial and nuclear encoded cytochrome c oxidase subunits and heat shock proteins in rat skeletal muscle.
    Samelman TR; Shiry LJ; Cameron DF
    Eur J Appl Physiol; 2000 Sep; 83(1):22-7. PubMed ID: 11072769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of thyrotoxicosis on mitochondrial enzymes of rat soleus.
    Courtright JB; Fitts RH
    Horm Metab Res; 1979 Apr; 11(4):304-6. PubMed ID: 222661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle and hormonal adaptation to physical training in the rat: role of the sympatho-adrenal system.
    Henriksson J; Svedenhag J; Richter EA; Christensen NJ; Galbo H
    Acta Physiol Scand; 1985 Feb; 123(2):127-38. PubMed ID: 2984895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential adaptation to endurance training between heart and gastrocnemius muscle mitochondria in rats.
    Murakami T; Shimomura Y; Fujitsuka N; Sugiyama S
    Biochem Mol Biol Int; 1995 Jun; 36(2):285-90. PubMed ID: 7663432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise.
    Andersen P; Henriksson J
    J Physiol; 1977 Sep; 270(3):677-90. PubMed ID: 198532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle mitochondrial changes by experimental immobility and hindlimb suspension.
    Goto YI; Komaki H; Igarashi F; Nonaka I
    J Gravit Physiol; 2000 Jul; 7(2):P109-10. PubMed ID: 12697529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of mitochondria of different types of skeletal muscle to thyrotoxicosis.
    Winder WW; Holloszy JO
    Am J Physiol; 1977 May; 232(5):C180-4. PubMed ID: 193405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.