These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23786232)

  • 1. Stepwise displacement of catalytically active gold nanoparticles on cerium oxide.
    Kuwauchi Y; Takeda S; Yoshida H; Sun K; Haruta M; Kohno H
    Nano Lett; 2013 Jul; 13(7):3073-7. PubMed ID: 23786232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-activated surface dynamics in gold catalysts under reaction environments.
    Kamiuchi N; Sun K; Aso R; Tane M; Tamaoka T; Yoshida H; Takeda S
    Nat Commun; 2018 May; 9(1):2060. PubMed ID: 29802253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
    Akita T; Kohyama M; Haruta M
    Acc Chem Res; 2013 Aug; 46(8):1773-82. PubMed ID: 23777292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector.
    Takeda S; Kuwauchi Y; Yoshida H
    Ultramicroscopy; 2015 Apr; 151():178-190. PubMed ID: 25498142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amperometric sensing of hydrazine in environmental and biological samples by using CeO
    Huang H; Li T; Sun Y; Yu L; Wang C; Shen R; Ye W; Wang D; Li Y
    Mikrochim Acta; 2019 Jan; 186(1):46. PubMed ID: 30610467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging nanostructural modifications induced by electronic metal-support interaction effects at Au||cerium-based oxide nanointerfaces.
    López-Haro M; Cíes JM; Trasobares S; Pérez-Omil JA; Delgado JJ; Bernal S; Bayle-Guillemaud P; Stéphan O; Yoshida K; Boyes ED; Gai PL; Calvino JJ
    ACS Nano; 2012 Aug; 6(8):6812-20. PubMed ID: 22789638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science.
    Takeda S; Yoshida H
    Microscopy (Oxf); 2013 Feb; 62(1):193-203. PubMed ID: 23325929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts.
    Xin P; Li J; Xiong Y; Wu X; Dong J; Chen W; Wang Y; Gu L; Luo J; Rong H; Chen C; Peng Q; Wang D; Li Y
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4642-4646. PubMed ID: 29464839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical Structure of the Gold-Iron(III) Oxide Interfacial Perimeter for CO Oxidation.
    Wei X; Shao B; Zhou Y; Li Y; Jin C; Liu J; Shen W
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11289-11293. PubMed ID: 29974580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.
    Dahle JT; Arai Y
    Int J Environ Res Public Health; 2015 Jan; 12(2):1253-78. PubMed ID: 25625406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide.
    Wang X; Du LY; Du M; Ma C; Zeng J; Jia CJ; Si R
    Phys Chem Chem Phys; 2017 Jun; 19(22):14533-14542. PubMed ID: 28537308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of formaldehyde by nanosized gold on well-defined CeO₂ nanorods at room temperature.
    Xu Q; Lei W; Li X; Qi X; Yu J; Liu G; Wang J; Zhang P
    Environ Sci Technol; 2014 Aug; 48(16):9702-8. PubMed ID: 25019508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of glucose oxidation by gold nanoparticles using nanoceria.
    Lang NJ; Liu B; Liu J
    J Colloid Interface Sci; 2014 Aug; 428():78-83. PubMed ID: 24910038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyethylenimine-mediated synthetic insertion of gold nanoparticles into mesoporous silica nanoparticles for drug loading and biocatalysis.
    Pandey PC; Pandey G; Narayan RJ
    Biointerphases; 2017 Mar; 12(1):011005. PubMed ID: 28347142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison study on the antibacterial activity of nano- or bulk-cerium oxide.
    Kuang Y; He X; Zhang Z; Li Y; Zhang H; Ma Y; Wu Z; Chai Z
    J Nanosci Nanotechnol; 2011 May; 11(5):4103-8. PubMed ID: 21780412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold-catalyzed cyanosilylation reaction: homogeneous and heterogeneous pathways.
    Cho WK; Lee JK; Kang SM; Chi YS; Lee HS; Choi IS
    Chemistry; 2007; 13(22):6351-8. PubMed ID: 17492807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.
    Röhder LA; Brandt T; Sigg L; Behra R
    Aquat Toxicol; 2014 Jul; 152():121-30. PubMed ID: 24747084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CeO2 nanorods-supported transition metal catalysts for CO oxidation.
    Mock SA; Sharp SE; Stoner TR; Radetic MJ; Zell ET; Wang R
    J Colloid Interface Sci; 2016 Mar; 466():261-7. PubMed ID: 26745742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of support size on the catalytic activity of metal-oxide-doped silica particles in the glycolysis of polyethylene terephthalate.
    Wi R; Imran M; Lee KG; Yoon SH; Cho BG; Kim DH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6544-9. PubMed ID: 22121753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting the Removal of Diesel Soot Particles by the Optimal Exposed Crystal Facet of CeO
    Wei Y; Zhang Y; Zhang P; Xiong J; Mei X; Yu Q; Zhao Z; Liu J
    Environ Sci Technol; 2020 Feb; 54(3):2002-2011. PubMed ID: 31891489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.