BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23786365)

  • 1. Stabilization of different types of transition states in a single enzyme active site: QM/MM analysis of enzymes in the alkaline phosphatase superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2013 Jul; 135(28):10457-69. PubMed ID: 23786365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis.
    Zalatan JG; Herschlag D
    J Am Chem Soc; 2006 Feb; 128(4):1293-303. PubMed ID: 16433548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.
    Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D
    J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promiscuity in alkaline phosphatase superfamily. Unraveling evolution through molecular simulations.
    López-Canut V; Roca M; Bertrán J; Moliner V; Tuñón I
    J Am Chem Soc; 2011 Aug; 133(31):12050-62. PubMed ID: 21609015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
    Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D
    J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation of Arg-166 of alkaline phosphatase alters the thio effect but not the transition state for phosphoryl transfer. Implications for the interpretation of thio effects in reactions of phosphatases.
    Holtz KM; Catrina IE; Hengge AC; Kantrowitz ER
    Biochemistry; 2000 Aug; 39(31):9451-8. PubMed ID: 10924140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.
    Zalatan JG; Catrina I; Mitchell R; Grzyska PK; O'brien PJ; Herschlag D; Hengge AC
    J Am Chem Soc; 2007 Aug; 129(31):9789-98. PubMed ID: 17630738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the Nature of the Phosphoryl Transfer Transition State in Protein Phosphatase 1 and Alkaline Phosphatase: Insights from QM Cluster Models.
    Lai R; Cui Q
    J Phys Chem B; 2020 Oct; 124(42):9371-9384. PubMed ID: 33030898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical modeling of the reaction mechanism of phosphate monoester hydrolysis in alkaline phosphatase.
    López-Canut V; Martí S; Bertrán J; Moliner V; Tuñón I
    J Phys Chem B; 2009 Jun; 113(22):7816-24. PubMed ID: 19425583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Phosphoryl-Transfer Enzymes with QM/MM Free Energy Simulations.
    Roston D; Lu X; Fang D; Demapan D; Cui Q
    Methods Enzymol; 2018; 607():53-90. PubMed ID: 30149869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the transition state for enzyme-catalyzed phosphoryl transfer. Hydrolysis of O-aryl phosphorothioates by alkaline phosphatase.
    Hollfelder F; Herschlag D
    Biochemistry; 1995 Sep; 34(38):12255-64. PubMed ID: 7547968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily.
    Barrozo A; Duarte F; Bauer P; Carvalho AT; Kamerlin SC
    J Am Chem Soc; 2015 Jul; 137(28):9061-76. PubMed ID: 26091851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion.
    Zalatan JG; Fenn TD; Herschlag D
    J Mol Biol; 2008 Dec; 384(5):1174-89. PubMed ID: 18851975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tungstate as a Transition State Analog for Catalysis by Alkaline Phosphatase.
    Peck A; Sunden F; Andrews LD; Pande VS; Herschlag D
    J Mol Biol; 2016 Jul; 428(13):2758-68. PubMed ID: 27189921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine coordination in enzymatic phosphoryl transfer: evaluation of the effect of Arg166 mutations in Escherichia coli alkaline phosphatase.
    O'Brien PJ; Lassila JK; Fenn TD; Zalatan JG; Herschlag D
    Biochemistry; 2008 Jul; 47(29):7663-72. PubMed ID: 18627128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.
    Andrews LD; Fenn TD; Herschlag D
    PLoS Biol; 2013 Jul; 11(7):e1001599. PubMed ID: 23843744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.