BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 23786395)

  • 21. Clinical feasibility of fast psychophysical tuning curves evaluated using normally hearing adults: success rate, range of tip shift, repeatability, and comparison of methods used for estimation of frequency at the tip.
    Myers J; Malicka AN
    Int J Audiol; 2014 Dec; 53(12):887-94. PubMed ID: 25156231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of auditory electrophysiological responses in normal-hearing patients with and without tinnitus.
    Singh S; Munjal SK; Panda NK
    J Laryngol Otol; 2011 Jul; 125(7):668-72. PubMed ID: 21554838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relations between cochlear histopathology and hearing loss in experimental cochlear implantation.
    O'Leary SJ; Monksfield P; Kel G; Connolly T; Souter MA; Chang A; Marovic P; O'Leary JS; Richardson R; Eastwood H
    Hear Res; 2013 Apr; 298():27-35. PubMed ID: 23396095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse.
    Song L; McGee J; Walsh EJ
    J Neurophysiol; 2008 Jan; 99(1):344-55. PubMed ID: 17989242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of noise-induced hair cell lesions on cochlear electromechanical responses: A computational approach using a biophysical model.
    Saremi A; Stenfelt S
    Int J Numer Method Biomed Eng; 2022 May; 38(5):e3582. PubMed ID: 35150464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cochlear compression in listeners with moderate sensorineural hearing loss.
    Lopez-Poveda EA; Plack CJ; Meddis R; Blanco JL
    Hear Res; 2005 Jul; 205(1-2):172-83. PubMed ID: 15953526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression and comodulation masking release in normal-hearing and hearing-impaired listeners.
    Ernst SM; Rennies J; Kollmeier B; Verhey JL
    J Acoust Soc Am; 2010 Jul; 128(1):300-9. PubMed ID: 20649225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of cochlear impairment and equivalent-threshold masking on psychoacoustic tuning curves.
    Florentine M
    Audiology; 1992; 31(5):241-53. PubMed ID: 1449429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ototoxicity of tobramycin in young adult and old rats.
    Dormans JA; Peters-Volleberg GW; Dortant PM; Speijers GJ
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):179-85. PubMed ID: 8560472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can basic auditory and cognitive measures predict hearing-impaired listeners' localization and spatial speech recognition abilities?
    Neher T; Laugesen S; Jensen NS; Kragelund L
    J Acoust Soc Am; 2011 Sep; 130(3):1542-58. PubMed ID: 21895093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a fast method for determining psychophysical tuning curves.
    Sek A; Alcántara J; Moore BC; Kluk K; Wicher A
    Int J Audiol; 2005 Jul; 44(7):408-20. PubMed ID: 16136791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency selectivity in patients with acoustic neuroma.
    Papsin BC; Abel SM; Nedzelski JM
    Laryngoscope; 1994 Sep; 104(9):1092-8. PubMed ID: 8072355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Fischer 344 rat as a model of presbycusis.
    Syka J
    Hear Res; 2010 Jun; 264(1-2):70-8. PubMed ID: 19903514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity.
    Jennings SG; Strickland EA
    J Acoust Soc Am; 2012 Oct; 132(4):2483-96. PubMed ID: 23039443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A two-layer outer hair cell model with orthotropic piezoelectric properties: correlation of cell resonant frequencies with tuning in the cochlea.
    Lim KM; Li H
    J Biomech; 2007; 40(6):1362-71. PubMed ID: 16824534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of focal lesions in the chinchilla organ of Corti following exposure to a 4-kHz or a 0.5-kHz octave band of noise.
    Harding GW; Bohne BA
    Hear Res; 2007 Mar; 225(1-2):50-9. PubMed ID: 17291699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protective effect of magnesium and MK 801 on hypoxia-induced hair cell loss in new-born rat cochlea.
    König O; Winter E; Fuchs J; Haupt H; Mazurek B; Weber N; Gross J
    Magnes Res; 2003 Jun; 16(2):98-105. PubMed ID: 12892379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensory transduction and frequency selectivity in the basal turn of the guinea-pig cochlea.
    Russell IJ; Kössl M
    Philos Trans R Soc Lond B Biol Sci; 1992 Jun; 336(1278):317-24. PubMed ID: 1354370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A note about insensitivity to pitch-change direction.
    Mathias SR; Bailey PJ; Semal C; Demany L
    J Acoust Soc Am; 2011 Oct; 130(4):EL129-34. PubMed ID: 21974481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of outer hair cell loss on the frequency selectivity of the patas monkey auditory system.
    Smith DW; Moody DB; Stebbins WC; Norat MA
    Hear Res; 1987; 29(2-3):125-38. PubMed ID: 2442130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.