BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23786422)

  • 1. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter.
    Tang SY; Qian S; Akinterinwa O; Frei CS; Gredell JA; Cirino PC
    J Am Chem Soc; 2013 Jul; 135(27):10099-103. PubMed ID: 23786422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Escherichia coli to increase triacetic acid lactone (TAL) production using an optimized TAL sensor-reporter system.
    Li Y; Qian S; Dunn R; Cirino PC
    J Ind Microbiol Biotechnol; 2018 Sep; 45(9):789-793. PubMed ID: 30046952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone.
    Frei CS; Wang Z; Qian S; Deutsch S; Sutter M; Cirino PC
    Protein Sci; 2016 Apr; 25(4):804-14. PubMed ID: 26749125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering sensitivity and specificity of AraC-based biosensors responsive to triacetic acid lactone and orsellinic acid.
    Wang Z; Doshi A; Chowdhury R; Wang Y; Maranas CD; Cirino PC
    Protein Eng Des Sel; 2020 Sep; 33():. PubMed ID: 33215672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AraC regulatory protein mutants with altered effector specificity.
    Tang SY; Fazelinia H; Cirino PC
    J Am Chem Soc; 2008 Apr; 130(15):5267-71. PubMed ID: 18355019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial synthesis of triacetic acid lactone.
    Xie D; Shao Z; Achkar J; Zha W; Frost JW; Zhao H
    Biotechnol Bioeng; 2006 Mar; 93(4):727-36. PubMed ID: 16245348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose.
    Zhou W; Zhuang Y; Bai Y; Bi H; Liu T; Ma Y
    Microb Cell Fact; 2016 Aug; 15(1):149. PubMed ID: 27577056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coupled in vitro/in vivo approach for engineering a heterologous type III PKS to enhance polyketide biosynthesis in Saccharomyces cerevisiae.
    Vickery CR; Cardenas J; Bowman ME; Burkart MD; Da Silva NA; Noel JP
    Biotechnol Bioeng; 2018 Jun; 115(6):1394-1402. PubMed ID: 29457628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis.
    Yu J; Landberg J; Shavarebi F; Bilanchone V; Okerlund A; Wanninayake U; Zhao L; Kraus G; Sandmeyer S
    Biotechnol Bioeng; 2018 Sep; 115(9):2383-2388. PubMed ID: 29777591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328.
    Kirimura K; Watanabe S; Kobayashi K
    Biochem Biophys Res Commun; 2016 May; 473(4):1106-1110. PubMed ID: 27060547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products.
    Li H; Chen W; Jin R; Jin JM; Tang SY
    Microb Cell Fact; 2017 Nov; 16(1):187. PubMed ID: 29096626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis.
    Chen W; Zhang S; Jiang P; Yao J; He Y; Chen L; Gui X; Dong Z; Tang SY
    Metab Eng; 2015 Jul; 30():149-155. PubMed ID: 26051748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone.
    Cardenas J; Da Silva NA
    Metab Eng; 2014 Sep; 25():194-203. PubMed ID: 25084369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triacetic acid lactone production using 2-pyrone synthase expressing Yarrowia lipolytica via targeted gene deletion.
    Matsuoka Y; Fujie N; Nakano M; Koshiba A; Kondo A; Tanaka T
    J Biosci Bioeng; 2023 Oct; 136(4):320-326. PubMed ID: 37574415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone.
    Cao M; Tran VG; Qin J; Olson A; Mishra S; Schultz JC; Huang C; Xie D; Zhao H
    Biotechnol Bioeng; 2022 Sep; 119(9):2529-2540. PubMed ID: 35701887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rewiring
    Markham KA; Palmer CM; Chwatko M; Wagner JM; Murray C; Vazquez S; Swaminathan A; Chakravarty I; Lynd NA; Alper HS
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2096-2101. PubMed ID: 29440400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New engineered phenolic biosensors based on the AraC regulatory protein.
    Frei CS; Qian S; Cirino PC
    Protein Eng Des Sel; 2018 Jun; 31(6):213-220. PubMed ID: 30239947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing 2-Pyrone Synthase Efficiency by High-Throughput Mass-Spectrometric Quantification and In Vitro/In Vivo Catalytic Performance Correlation.
    Zhou Y; Zhou S; Lyons S; Sun H; Sweedler JV; Lu Y
    Chembiochem; 2024 Mar; 25(5):e202300849. PubMed ID: 38116888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering of
    Feng L; Xu J; Ye C; Gao J; Huang L; Xu Z; Lian J
    J Fungi (Basel); 2023 Apr; 9(4):. PubMed ID: 37108948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triacetic acid lactone production in industrial Saccharomyces yeast strains.
    Saunders LP; Bowman MJ; Mertens JA; Da Silva NA; Hector RE
    J Ind Microbiol Biotechnol; 2015 May; 42(5):711-21. PubMed ID: 25682106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.