These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23786451)

  • 1. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis.
    Bailey JV; Corsetti FA; Greene SE; Crosby CH; Liu P; Orphan VJ
    Geobiology; 2013 Sep; 11(5):397-405. PubMed ID: 23786451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites.
    Bailey JV; Joye SB; Kalanetra KM; Flood BE; Corsetti FA
    Nature; 2007 Jan; 445(7124):198-201. PubMed ID: 17183268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of microbes in the formation of modern and ancient phosphatic mineral deposits.
    Crosby CH; Bailey JV
    Front Microbiol; 2012; 3():241. PubMed ID: 22783245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial communities associated with phosphogenic sediments and phosphoclast-associated DNA of the Benguela upwelling system.
    Zoss R; Medina Ferrer F; Flood BE; Jones DS; Louw DC; Bailey J
    Geobiology; 2019 Jan; 17(1):76-90. PubMed ID: 30369004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large sulfur bacteria and the formation of phosphorite.
    Schulz HN; Schulz HD
    Science; 2005 Jan; 307(5708):416-8. PubMed ID: 15662012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial formation of phosphatic laminites off Peru.
    Arning ET; Birgel D; Brunner B; Peckmann J
    Geobiology; 2009 Jun; 7(3):295-307. PubMed ID: 19476504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain.
    Brock J; Schulz-Vogt HN
    ISME J; 2011 Mar; 5(3):497-506. PubMed ID: 20827290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco).
    Cosmidis J; Benzerara K; Gheerbrant E; Estève I; Bouya B; Amaghzaz M
    Geobiology; 2013 Mar; 11(2):139-53. PubMed ID: 23301909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metatranscriptomic insights into polyphosphate metabolism in marine sediments.
    Jones DS; Flood BE; Bailey JV
    ISME J; 2016 Apr; 10(4):1015-9. PubMed ID: 26381585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep.
    Stevens EW; Bailey JV; Flood BE; Jones DS; Gilhooly WP; Joye SB; Teske A; Mason OU
    Geobiology; 2015 Nov; 13(6):588-603. PubMed ID: 26462132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemotrophic microbial mats and their potential for preservation in the rock record.
    Bailey JV; Orphan VJ; Joye SB; Corsetti FA
    Astrobiology; 2009 Nov; 9(9):843-59. PubMed ID: 19968462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Authigenesis of biomorphic apatite particles from Benguela upwelling zone sediments off Namibia: The role of organic matter in sedimentary apatite nucleation and growth.
    Mänd K; Kirsimäe K; Lepland A; Crosby CH; Bailey JV; Konhauser KO; Wirth R; Schreiber A; Lumiste K
    Geobiology; 2018 Nov; 16(6):640-658. PubMed ID: 30062734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China.
    Xiao S; Knoll AH
    Lethaia; 1999 Sep; 32(3):219-40. PubMed ID: 11543524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India.
    Sallstedt T; Bengtson S; Broman C; Crill PM; Canfield DE
    Geobiology; 2018 Mar; 16(2):139-159. PubMed ID: 29380943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eumetazoan fossils in terminal proterozoic phosphorites?
    Xiao S; Yuan X; Knoll AH
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13684-9. PubMed ID: 11095754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of organic forms of phosphorus and variable concentrations of sulfide on the metabolic generation of soluble-reactive phosphate by sulfur chemolithoautotrophs: a laboratory study.
    Guhathakurta H; Biswas R; Dey P; Mahapatra PG; Mondal B
    ISME J; 2007 Oct; 1(6):545-50. PubMed ID: 18043655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global biogeochemical changes at both ends of the proterozoic: insights from phosphorites.
    Papineau D
    Astrobiology; 2010 Mar; 10(2):165-81. PubMed ID: 20105035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fossilized giant sulfide-oxidizing bacteria from the Devonian Hollard Mound seep deposit, Morocco.
    Smrzka D; Zwicker J; Schulz-Vogt H; Little CTS; Rieder M; Meister P; Gier S; Peckmann J
    Geobiology; 2024; 22(1):e12581. PubMed ID: 38059419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients.
    Sievert SM; Wieringa EB; Wirsen CO; Taylor CD
    Environ Microbiol; 2007 Jan; 9(1):271-6. PubMed ID: 17227432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.
    Krepski ST; Emerson D; Hredzak-Showalter PL; Luther GW; Chan CS
    Geobiology; 2013 Sep; 11(5):457-71. PubMed ID: 23790206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.