BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 23786648)

  • 1. Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling.
    von Goetz N; Lorenz C; Windler L; Nowack B; Heuberger M; Hungerbühler K
    Environ Sci Technol; 2013 Sep; 47(17):9979-87. PubMed ID: 23786648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat.
    Wagener S; Dommershausen N; Jungnickel H; Laux P; Mitrano D; Nowack B; Schneider G; Luch A
    Environ Sci Technol; 2016 Jun; 50(11):5927-34. PubMed ID: 27128362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dermal exposure potential from textiles that contain silver nanoparticles.
    Stefaniak AB; Duling MG; Lawrence RB; Thomas TA; LeBouf RF; Wade EE; Virji MA
    Int J Occup Environ Health; 2014; 20(3):220-34. PubMed ID: 25000110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The behavior of silver nanotextiles during washing.
    Geranio L; Heuberger M; Nowack B
    Environ Sci Technol; 2009 Nov; 43(21):8113-8. PubMed ID: 19924931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot study on the identification of silver in skin layers and urine after dermal exposure to a functionalized textile.
    Bianco C; Kezic S; Visser MJ; Pluut O; Adami G; Krystek P
    Talanta; 2015 May; 136():23-8. PubMed ID: 25702980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative textiles treated with TiO
    Ali MA; Abdel-Rahim EA; Mahmoud AA; Mohamed SE
    Sci Rep; 2024 Apr; 14(1):8045. PubMed ID: 38580674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat.
    Kulthong K; Srisung S; Boonpavanitchakul K; Kangwansupamonkon W; Maniratanachote R
    Part Fibre Toxicol; 2010 Apr; 7():8. PubMed ID: 20359338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro antimicrobial and anticancer properties of TiO
    Bonan RF; Mota MF; da Costa Farias RM; da Silva SD; Bonan PRF; Diesel L; Menezes RR; da Cruz Perez DE
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109876. PubMed ID: 31500007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver.
    Lee JH; Kwon M; Ji JH; Kang CS; Ahn KH; Han JH; Yu IJ
    Inhal Toxicol; 2011 Mar; 23(4):226-36. PubMed ID: 21456955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of silver release from commercially available functional (nano)textiles.
    Lorenz C; Windler L; von Goetz N; Lehmann RP; Schuppler M; Hungerbühler K; Heuberger M; Nowack B
    Chemosphere; 2012 Oct; 89(7):817-24. PubMed ID: 22677521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of titanium dioxide from textiles during washing.
    Windler L; Lorenz C; von Goetz N; Hungerbühler K; Amberg M; Heuberger M; Nowack B
    Environ Sci Technol; 2012 Aug; 46(15):8181-8. PubMed ID: 22746197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile.
    Hebeish AA; Abdelhady MM; Youssef AM
    Carbohydr Polym; 2013 Jan; 91(2):549-59. PubMed ID: 23121944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution.
    Impellitteri CA; Tolaymat TM; Scheckel KG
    J Environ Qual; 2009; 38(4):1528-30. PubMed ID: 19465729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plants.
    Polesel F; Farkas J; Kjos M; Almeida Carvalho P; Flores-Alsina X; Gernaey KV; Hansen SF; Plósz BG; Booth AM
    Water Res; 2018 Sep; 141():19-31. PubMed ID: 29753974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.
    Nam SH; Kim SW; An YJ
    J Appl Toxicol; 2013 Oct; 33(10):1061-9. PubMed ID: 23161381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of silver nanoparticles from fabrics during the course of sequential washing.
    Limpiteeprakan P; Babel S; Lohwacharin J; Takizawa S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22810-22818. PubMed ID: 27566159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The release properties of silver ions from Ag-nHA/TiO2/PA66 antimicrobial composite scaffolds.
    Wu X; Li J; Wang L; Huang D; Zuo Y; Li Y
    Biomed Mater; 2010 Aug; 5(4):044105. PubMed ID: 20683127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro percutaneous penetration and characterization of silver from silver-containing textiles.
    Bianco C; Kezic S; Crosera M; Svetličić V; Šegota S; Maina G; Romano C; Larese F; Adami G
    Int J Nanomedicine; 2015; 10():1899-908. PubMed ID: 25792824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human exposure assessment of silver and copper migrating from an antimicrobial nanocoated packaging material into an acidic food simulant.
    Hannon JC; Kerry JP; Cruz-Romero M; Azlin-Hasim S; Morris M; Cummins E
    Food Chem Toxicol; 2016 Sep; 95():128-36. PubMed ID: 27402098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver speciation and release in commercial antimicrobial textiles as influenced by washing.
    Lombi E; Donner E; Scheckel KG; Sekine R; Lorenz C; Von Goetz N; Nowack B
    Chemosphere; 2014 Sep; 111():352-8. PubMed ID: 24997939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.