BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23786663)

  • 1. A steady-state theory for processive cellulases.
    Cruys-Bagger N; Elmerdahl J; Praestgaard E; Borch K; Westh P
    FEBS J; 2013 Aug; 280(16):3952-61. PubMed ID: 23786663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain.
    Cruys-Bagger N; Tatsumi H; Ren GR; Borch K; Westh P
    Biochemistry; 2013 Dec; 52(49):8938-48. PubMed ID: 24228828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases.
    Cruys-Bagger N; Badino SF; Tokin R; Gontsarik M; Fathalinejad S; Jensen K; Toscano MD; Sørensen TH; Borch K; Tatsumi H; Väljamäe P; Westh P
    Enzyme Microb Technol; 2014 May; 58-59():68-74. PubMed ID: 24731827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose.
    Nakamura A; Watanabe H; Ishida T; Uchihashi T; Wada M; Ando T; Igarashi K; Samejima M
    J Am Chem Soc; 2014 Mar; 136(12):4584-92. PubMed ID: 24571226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: depolymerization by EGI and CBHI.
    Griggs AJ; Stickel JJ; Lischeske JJ
    Biotechnol Bioeng; 2012 Mar; 109(3):665-75. PubMed ID: 22034153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomeric Selectivity and Product Profile of a Processive Cellulase.
    Kari J; Kont R; Borch K; Buskov S; Olsen JP; Cruyz-Bagger N; Väljamäe P; Westh P
    Biochemistry; 2017 Jan; 56(1):167-178. PubMed ID: 28026938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution.
    Olsen JP; Kari J; Borch K; Westh P
    Enzyme Microb Technol; 2017 Oct; 105():45-50. PubMed ID: 28756860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor.
    Tatsumi H; Katano H; Ikeda T
    Anal Biochem; 2006 Oct; 357(2):257-61. PubMed ID: 16934211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes.
    Fox JM; Levine SE; Clark DS; Blanch HW
    Biochemistry; 2012 Jan; 51(1):442-52. PubMed ID: 22103405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A.
    Cruys-Bagger N; Elmerdahl J; Praestgaard E; Tatsumi H; Spodsberg N; Borch K; Westh P
    J Biol Chem; 2012 May; 287(22):18451-8. PubMed ID: 22493488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose.
    Cruys-Bagger N; Ren G; Tatsumi H; Baumann MJ; Spodsberg N; Andersen HD; Gorton L; Borch K; Westh P
    Biotechnol Bioeng; 2012 Dec; 109(12):3199-204. PubMed ID: 22767376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics II: cooperative enzyme action, solution kinetics, and product inhibition.
    Griggs AJ; Stickel JJ; Lischeske JJ
    Biotechnol Bioeng; 2012 Mar; 109(3):676-85. PubMed ID: 22034106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature Effects on Kinetic Parameters and Substrate Affinity of Cel7A Cellobiohydrolases.
    Sørensen TH; Cruys-Bagger N; Windahl MS; Badino SF; Borch K; Westh P
    J Biol Chem; 2015 Sep; 290(36):22193-202. PubMed ID: 26183777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates.
    Kipper K; Väljamäe P; Johansson G
    Biochem J; 2005 Jan; 385(Pt 2):527-35. PubMed ID: 15362979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A.
    Petrášek Z; Eibinger M; Nidetzky B
    Biotechnol Bioeng; 2019 Mar; 116(3):515-525. PubMed ID: 30515756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical approach to steady-state kinetic analysis of cellulases acting on their natural insoluble substrate.
    Kari J; Christensen SJ; Andersen M; Baiget SS; Borch K; Westh P
    Anal Biochem; 2019 Dec; 586():113411. PubMed ID: 31520594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases.
    Beckham GT; Ståhlberg J; Knott BC; Himmel ME; Crowley MF; Sandgren M; Sørlie M; Payne CM
    Curr Opin Biotechnol; 2014 Jun; 27():96-106. PubMed ID: 24863902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic model for the burst phase of processive cellulases.
    Praestgaard E; Elmerdahl J; Murphy L; Nymand S; McFarland KC; Borch K; Westh P
    FEBS J; 2011 May; 278(9):1547-60. PubMed ID: 21371261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Product inhibition of five Hypocrea jecorina cellulases.
    Murphy L; Bohlin C; Baumann MJ; Olsen SN; Sørensen TH; Anderson L; Borch K; Westh P
    Enzyme Microb Technol; 2013 Mar; 52(3):163-9. PubMed ID: 23410927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis.
    Jalak J; Väljamäe P
    Biotechnol Bioeng; 2010 Aug; 106(6):871-83. PubMed ID: 20506147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.