These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23786663)

  • 21. Cellulose chain binding free energy drives the processive move of cellulases on the cellulose surface.
    Wang Y; Zhang S; Song X; Yao L
    Biotechnol Bioeng; 2016 Sep; 113(9):1873-80. PubMed ID: 26928155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina.
    Badino SF; Kari J; Christensen SJ; Borch K; Westh P
    Biochim Biophys Acta Proteins Proteom; 2017 Dec; 1865(12):1739-1745. PubMed ID: 28844741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Convergent evolution of processivity in bacterial and fungal cellulases.
    Uchiyama T; Uchihashi T; Nakamura A; Watanabe H; Kaneko S; Samejima M; Igarashi K
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19896-19903. PubMed ID: 32747547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulose hydrolysis by cellobiohydrolase Cel7A shows mixed hyperbolic product inhibition.
    Bezerra RM; Dias AA; Fraga I; Pereira AN
    Appl Biochem Biotechnol; 2011 Sep; 165(1):178-89. PubMed ID: 21499786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Processivity of cellobiohydrolases is limited by the substrate.
    Kurasin M; Väljamäe P
    J Biol Chem; 2011 Jan; 286(1):169-77. PubMed ID: 21051539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rate of Threading a Cellulose Chain into the Binding Tunnel of a Cellulase.
    Cruys-Bagger N; Alasepp K; Andersen M; Ottesen J; Borch K; Westh P
    J Phys Chem B; 2016 Jun; 120(25):5591-600. PubMed ID: 27248184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics.
    Väljamäe P; Kipper K; Pettersson G; Johansson G
    Biotechnol Bioeng; 2003 Oct; 84(2):254-7. PubMed ID: 12966583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring processivity.
    Horn SJ; Sørlie M; Vårum KM; Väljamäe P; Eijsink VG
    Methods Enzymol; 2012; 510():69-95. PubMed ID: 22608722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Competitive sorption kinetics of inhibited endo- and exoglucanases on a model cellulose substrate.
    Maurer SA; Bedbrook CN; Radke CJ
    Langmuir; 2012 Oct; 28(41):14598-608. PubMed ID: 22966968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Regulation of the formation and conversion of intermediate cellooligosaccharides and cellobiose during ezymatic hydrolysis of insoluble cellulose].
    Klésov AA
    Biokhimiia; 1982 Apr; 47(4):608-18. PubMed ID: 7200805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A steady-state approach for inhibition of heterogeneous enzyme reactions.
    Kari J; Schiano-di-Cola C; Hansen SF; Badino SF; Sørensen TH; Cavaleiro AM; Borch K; Westh P
    Biochem J; 2020 May; 477(10):1971-1982. PubMed ID: 32391552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase.
    Igarashi K; Wada M; Samejima M
    FEBS J; 2007 Apr; 274(7):1785-92. PubMed ID: 17319934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.
    Kuusk S; Sørlie M; Väljamäe P
    J Biol Chem; 2015 May; 290(18):11678-91. PubMed ID: 25767120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose.
    Sørensen TH; Cruys-Bagger N; Borch K; Westh P
    J Biol Chem; 2015 Sep; 290(36):22203-11. PubMed ID: 26183776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis.
    Gao D; Chundawat SP; Sethi A; Balan V; Gnanakaran S; Dale BE
    Proc Natl Acad Sci U S A; 2013 Jul; 110(27):10922-7. PubMed ID: 23784776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dissociation mechanism of processive cellulases.
    Vermaas JV; Kont R; Beckham GT; Crowley MF; Gudmundsson M; Sandgren M; Ståhlberg J; Väljamäe P; Knott BC
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23061-23067. PubMed ID: 31666327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the molecular states of the processive endocellulase Thermobifida fusca Cel9A during crystalline cellulose depolymerization.
    Kostylev M; Moran-Mirabal JM; Walker LP; Wilson DB
    Biotechnol Bioeng; 2012 Jan; 109(1):295-9. PubMed ID: 21837665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Km values of beta-glucosidases using cellobiose as substrate.
    Yan SM; Shi DQ; Nong H; Wu G
    Interdiscip Sci; 2012 Mar; 4(1):46-53. PubMed ID: 22392276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.