These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 23786814)

  • 1. Structural characterization of natural organic matter and its impact on methomyl removal efficiency in Fenton process.
    Fan C; Horng CY; Li SJ
    Chemosphere; 2013 Sep; 93(1):178-83. PubMed ID: 23786814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parathion degradation and its intermediate formation by Fenton process in neutral environment.
    Fan C; Tsui L; Liao MC
    Chemosphere; 2011 Jan; 82(2):229-36. PubMed ID: 21035166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of DBPs' precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor.
    Moncayo-Lasso A; Pulgarin C; Benítez N
    Water Res; 2008 Sep; 42(15):4125-32. PubMed ID: 18718626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalytic activity of the iron-coated pumice particles used as heterogeneous catalysts in the oxidation of natural organic matter by H2O2.
    Alver A; Karaarslan M; Kılıç A
    Environ Technol; 2016 Aug; 37(16):2040-7. PubMed ID: 26881482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles.
    Kitis M; Kaplan SS
    Chemosphere; 2007 Aug; 68(10):1846-53. PubMed ID: 17462704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic chronoamperometric method for the determination of H₂O₂ using MnO₂-based carbon paste electrodes in groundwater treated by Fenton and Fenton-like reagents for natural organic matter removal.
    Zbiljić J; Vajdle O; Guzsvány V; Molnar J; Agbaba J; Dalmacija B; Kalcher K
    J Hazard Mater; 2015; 283():292-301. PubMed ID: 25310597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the role of humic acid on Pd-catalytic electro-Fenton transformation of toluene in groundwater.
    Liao P; Al-Ani Y; Malik Ismael Z; Wu X
    Sci Rep; 2015 Mar; 5():9239. PubMed ID: 25783864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic exploration of the catalytic modification by co-dissolved organic molecules for micropollutant degradation during fenton process.
    Lee YY; Fan C
    Chemosphere; 2020 Nov; 258():127338. PubMed ID: 32544813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process.
    Sajiki J; Masumizu T
    Chemosphere; 2004 Oct; 57(4):241-52. PubMed ID: 15312722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new insight into Fenton and Fenton-like processes for water treatment: Part II. Influence of organic compounds on Fe(III)/Fe(II) interconversion and the course of reactions.
    Jiang C; Gao Z; Qu H; Li J; Wang X; Li P; Liu H
    J Hazard Mater; 2013 Apr; 250-251():76-81. PubMed ID: 23434482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intensification of degradation of methomyl (carbamate group pesticide) by using the combination of ultrasonic cavitation and process intensifying additives.
    Raut-Jadhav S; Pinjari DV; Saini DR; Sonawane SH; Pandit AB
    Ultrason Sonochem; 2016 Jul; 31():135-42. PubMed ID: 26964933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced oxidation and mineralization of 3-indole butyric acid (IBA) by Fenton and Fenton-like processes.
    Ustün GE; Solmaz SK; Morsünbül T; Azak HS
    J Hazard Mater; 2010 Aug; 180(1-3):508-13. PubMed ID: 20466487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron.
    Mak MS; Lo IM
    Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants.
    Yang XJ; Xu XM; Xu J; Han YF
    J Am Chem Soc; 2013 Oct; 135(43):16058-61. PubMed ID: 24124647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.
    Subramanian G; Madras G
    Water Res; 2016 Nov; 104():168-177. PubMed ID: 27522633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance.
    Rusevova K; Kopinke FD; Georgi A
    J Hazard Mater; 2012 Nov; 241-242():433-40. PubMed ID: 23098995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental design applied to photo-Fenton treatment of highly methomyl-concentrated water.
    Micó MM; Bacardit J; Sans C
    Water Sci Technol; 2010; 62(9):2066-74. PubMed ID: 21045333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds.
    Khan E; Wirojanagud W; Sermsai N
    J Hazard Mater; 2009 Jan; 161(2-3):1024-34. PubMed ID: 18502575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fenton-like oxidation process using corrosion of iron metal sheet surfaces in the presence of hydrogen peroxide: a batch process study using model pollutants.
    Namkung KC; Burgess AE; Bremner DH
    Environ Technol; 2005 Mar; 26(3):341-52. PubMed ID: 15881030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.