BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 23787154)

  • 1. Structural features important for the RNA chaperone activity of zinc finger-containing glycine-rich RNA-binding proteins from wheat (Triticum avestivum) and rice (Oryza sativa).
    Xu T; Han JH; Kang H
    Phytochemistry; 2013 Oct; 94():28-35. PubMed ID: 23787154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response.
    Tripet BP; Mason KE; Eilers BJ; Burns J; Powell P; Fischer AM; Copié V
    Biochemistry; 2014 Dec; 53(50):7945-60. PubMed ID: 25495582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.
    Raman S; Suguna K
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):688-96. PubMed ID: 26057797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum.
    Lee MO; Kim KP; Kim BG; Hahn JS; Hong CB
    Mol Cells; 2009 Jan; 27(1):47-54. PubMed ID: 19214433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins.
    Manival X; Ghisolfi-Nieto L; Joseph G; Bouvet P; Erard M
    Nucleic Acids Res; 2001 Jun; 29(11):2223-33. PubMed ID: 11376140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of cold shock proteins in archaea.
    Giaquinto L; Curmi PM; Siddiqui KS; Poljak A; DeLong E; DasSarma S; Cavicchioli R
    J Bacteriol; 2007 Aug; 189(15):5738-48. PubMed ID: 17545280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Tudor protein with multiple SNc domains from pea seedlings: cellular localization, partial characterization, sequence analysis, and phylogenetic relationships.
    Abe S; Sakai M; Yagi K; Hagino T; Ochi K; Shibata K; Davies E
    J Exp Bot; 2003 Mar; 54(384):971-83. PubMed ID: 12598568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of zinc finger proteins involved in plant disease resistance.
    Gupta SK; Rai AK; Kanwar SS; Sharma TR
    PLoS One; 2012; 7(8):e42578. PubMed ID: 22916136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal regulation of alternative splicing associated with thermotolerance in rice by two glycine-rich RNA-binding proteins.
    Yang C; Luo A; Lu HP; Davis SJ; Liu JX
    Sci Bull (Beijing); 2024 Jan; 69(1):59-71. PubMed ID: 38044192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of human J-type co-chaperone HscB reveals a tetracysteine metal-binding domain.
    Bitto E; Bingman CA; Bittova L; Kondrashov DA; Bannen RM; Fox BG; Markley JL; Phillips GN
    J Biol Chem; 2008 Oct; 283(44):30184-92. PubMed ID: 18713742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues.
    Hu Y; Bojikova-Fournier S; King AM; MacRae TH
    Cell Stress Chaperones; 2011 Mar; 16(2):133-41. PubMed ID: 20878295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting zinc finger domains with small molecules: solution structure and binding studies of the RanBP2-type zinc finger of RBM5.
    Farina B; Fattorusso R; Pellecchia M
    Chembiochem; 2011 Dec; 12(18):2837-45. PubMed ID: 22162216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prokaryotic expression, purification, and the in vitro and in vivo protection study of dehydrin WDHN2 from Triticum aestivum.
    Zhang H; Wu J; Fu D; Zhang M; Wang L; Gong M
    Protoplasma; 2024 Jul; 261(4):771-781. PubMed ID: 38342804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolytic release of the intramolecular chaperone domain confers processivity to endosialidase F.
    Schwarzer D; Stummeyer K; Haselhorst T; Freiberger F; Rode B; Grove M; Scheper T; von Itzstein M; Mühlenhoff M; Gerardy-Schahn R
    J Biol Chem; 2009 Apr; 284(14):9465-74. PubMed ID: 19189967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of functional domains of the chaperone Cosmc.
    Hanes MS; Moremen KW; Cummings RD
    PLoS One; 2017; 12(6):e0180242. PubMed ID: 28665962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of MESD45-184 brings light into the mechanism of LDLR family folding.
    Köhler C; Lighthouse JK; Werther T; Andersen OM; Diehl A; Schmieder P; Du J; Holdener BC; Oschkinat H
    Structure; 2011 Mar; 19(3):337-48. PubMed ID: 21397185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The translation initiation factor, PeIF5B, from Pisum sativum displays chaperone activity.
    Suragani M; Rasheedi S; Hasnain SE; Ehtesham NZ
    Biochem Biophys Res Commun; 2011 Oct; 414(2):390-6. PubMed ID: 21964295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of DNA binding to human YB-1 cold shock domain regulated by phosphorylation.
    Zhang J; Fan JS; Li S; Yang Y; Sun P; Zhu Q; Wang J; Jiang B; Yang D; Liu M
    Nucleic Acids Res; 2020 Sep; 48(16):9361-9371. PubMed ID: 32710623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa.
    Cheng HC; Cheng PT; Peng P; Lyu PC; Sun YJ
    Protein Sci; 2004 Sep; 13(9):2304-15. PubMed ID: 15295114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermotolerance and molecular chaperone function of an SGT1-like protein from the psychrophilic yeast, Glaciozyma antarctica.
    Yusof NA; Hashim NH; Beddoe T; Mahadi NM; Illias RM; Bakar FD; Murad AM
    Cell Stress Chaperones; 2016 Jul; 21(4):707-15. PubMed ID: 27154490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.