BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23787393)

  • 1. Efficient generation of human natural killer cell lines by viral transformation.
    Vogel B; Tennert K; Full F; Ensser A
    Leukemia; 2014 Jan; 28(1):192-5. PubMed ID: 23787393
    [No Abstract]   [Full Text] [Related]  

  • 2. Establishment and characterization of Macaca fascicularis lymphoblastoid cell lines.
    Manning CH; Heise ER
    J Med Primatol; 1992 Jan; 21(1):15-23. PubMed ID: 1602455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a 140-kDa activation antigen as a target structure for a series of human cloned natural killer cell lines.
    Hercend T; Schmidt R; Brennan A; Edson MA; Reinherz EL; Schlossman SF; Ritz J
    Eur J Immunol; 1984 Sep; 14(9):844-52. PubMed ID: 6479209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of long-term human cytolytic cell lines with persistent natural killer activity.
    Krensky AM; Ault KA; Reiss CS; Strominger JL; Burakoff SJ
    J Immunol; 1982 Oct; 129(4):1748-51. PubMed ID: 6286775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis.
    Trinchieri G; Santoli D
    J Exp Med; 1978 May; 147(5):1314-33. PubMed ID: 650156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A major 50-kDa human B-cell growth factor-II induces both Tac antigen expression and proliferation by several types of lymphocytes.
    Kawano M; Matsushima K; Masuda A; Oppenheim JJ
    Cell Immunol; 1988 Feb; 111(2):273-86. PubMed ID: 2827895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic and functional heterogeneity of human cloned natural killer cell lines.
    Hercend T; Reinherz EL; Meuer S; Schlossman SF; Ritz J
    Nature; 1983 Jan; 301(5896):158-60. PubMed ID: 6823293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inverse relation of the oncogenic potential of adenovirus-transformed cells and their sensitivity to killing by syngeneic natural killer cells.
    Raska K; Gallimore PH
    Virology; 1982 Nov; 123(1):8-18. PubMed ID: 7147716
    [No Abstract]   [Full Text] [Related]  

  • 9. Herpesvirus ateles and herpesvirus saimiri transform marmoset T cells into continuously proliferating cell lines that can mediate natural killer cell-like cytotoxicity.
    Johnson DR; Jondal M
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6391-5. PubMed ID: 6273869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective generation of killer cells against spontaneously Epstein-Barr virus (EBV)-transformed autologous B cells in a fatal EBV infection.
    Yanagisawa M; Kato M; Ikeno K; Kobayashi T; Miyagawa Y; Komiyama A; Akabane T
    Clin Exp Immunol; 1987 May; 68(2):251-8. PubMed ID: 2820633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumorigenicity of adenovirus-transformed cells: region E1A of adenovirus 12 confers resistance to natural killer cells.
    Sawada Y; Föhring B; Shenk TE; Raska K
    Virology; 1985 Dec; 147(2):413-21. PubMed ID: 3878030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo Epstein Barr virus-induced augmentation of natural killer cell activity in the Chédiak-Higashi syndrome.
    Katz P; Zaytoun AM; Lee JH; Fauci AS
    J Immunol; 1984 Feb; 132(2):571-3. PubMed ID: 6197464
    [No Abstract]   [Full Text] [Related]  

  • 13. Herpes simplex virus-infected cells disarm killer lymphocytes.
    Confer DL; Vercellotti GM; Kotasek D; Goodman JL; Ochoa A; Jacob HS
    Proc Natl Acad Sci U S A; 1990 May; 87(9):3609-13. PubMed ID: 2159156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxic effector cells from infectious mononucleosis patients in the acute phase do not specifically kill Epstein-Barr virus genome-carrying lymphoid cell lines.
    Patel PC; Dorval G; Menezes J
    Infect Immun; 1982 Oct; 38(1):251-9. PubMed ID: 6292093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human natural killer cells: a comprehensive review.
    Sinkovics JG; Horvath JC
    Int J Oncol; 2005 Jul; 27(1):5-47. PubMed ID: 15942642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic life of natural killer cells.
    Yokoyama WM; Kim S; French AR
    Annu Rev Immunol; 2004; 22():405-29. PubMed ID: 15032583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of antigen expression on lymphoblastoid cell lines.
    Gazit E; Azocar J; Mahoney R; Watson A; Dubey D; Essex M; Yunis E
    Transplant Proc; 1981 Mar; 13(1 Pt 2):1002-4. PubMed ID: 6168055
    [No Abstract]   [Full Text] [Related]  

  • 18. Helper and suppressor T-cells regulating killer cells of EB virus infected cells.
    Yoshimura N; Yata J
    Tohoku J Exp Med; 1983 Aug; 140(4):353-62. PubMed ID: 6314594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical analysis of human natural killer cells.
    André P; Anfossi N
    Methods Mol Biol; 2008; 415():291-300. PubMed ID: 18370161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypermethylation of Death-Associated Protein Kinase 1 differentiates natural killer cell lines from cell lines derived from T-acute lymphoblastic leukemia.
    Röhrs S; Romani J; Zaborski M; Drexler HG; Quentmeier H
    Leukemia; 2009 Jun; 23(6):1174-6. PubMed ID: 19212339
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.